皮皮网
皮皮网

【追号软件源码】【软件 源码包 安装教程】【网页游戏源码如何运行】lua 源码

来源:查论文源码网站 发表时间:2024-11-06 13:50:20

1.LuaJIT源码分析(一)搭建调试环境
2.Lua5.4 源码剖析——虚拟机6 之 OpCode大全
3.《Lua5.4 源码剖析——基本数据类型 之 数字类型》
4.《Lua5.4 源码剖析——基本数据类型 之 布尔类型》
5.Lua如何进行大数运算(附源码)
6.lua文件的二进制文件如何转换成源代码

lua 源码

LuaJIT源码分析(一)搭建调试环境

       LuaJIT,这个以高效著称的lua即时编译器(JIT),因其源码资料稀缺,促使我们不得不自建环境进行深入学习。分析源码的第一步,就是追号软件源码搭建一个可用于调试的环境,但即使是这个初始步骤,能找到的指导也相当有限,反映出LuaJIT的编译过程复杂性。

       首先,从官方git仓库开始,通过命令`git clone https://luajit.org/git/luajit.git`获取源代码。GitHub上也有相应的镜像地址。对于调试,LuaJIT提供msvcbuild.bat脚本,位于src目录下,它将编译过程分为三个阶段:构建minilua,用于平台判断和执行lua脚本;buildvm生成库函数映射;以及lua库的编译和最终LuaJIT的生成。该脚本需在Visual Studio Command Prompt环境中以管理员权限运行,且有四个可选编译参数。

       在调试时,我们无需这些选项,但需要保留中间代码。因此,需要在脚本中注释掉清理代码的部分。在Visual Studio 的位命令提示符中,切换到src目录并运行`msvcbuild.bat`。编译过程快速,成功时会看到日志信息。在src目录下,luajit.exe即为lua虚拟机。

       接着,在src目录的同级目录创建一个VS工程,将源文件和头文件添加进来。初次尝试调试可能会遇到关于strerror函数安全性的警告,这可以通过在工程属性中添加_CRT_SECURE_NO_WARNINGS宏来解决。然而,链接阶段可能会出现重复定义的错误,这与ljamalg.c文件的编译选项有关。amalg选项用于生成单个大文件,以优化代码,但我们通常不启用它。软件 源码包 安装教程

       排除ljamalg.c后,再次尝试调试,可能还需要手动添加buildvm阶段生成的目标文件。当LuaJIT启动并设置好断点后,就可以开始调试源码了。至此,你已经成功搭建了一个LuaJIT的调试环境,为深入理解其工作原理铺平了道路。

Lua5.4 源码剖析——虚拟机6 之 OpCode大全

       深入探索Lua5.4虚拟机的奥秘——OpCode大揭秘

       在Lua5.4的世界里,多个精心设计的OpCode构成了其强大的指令集,它们像乐谱上的音符,驱动着程序的旋律。让我们一起走入Lua5.4的虚拟机,逐个解析这些关键的指令代码单元。

       数据加载乐章

       首先,我们来到数据加载的舞台,OpCode在这里翩翩起舞:

OP_MOVE: 轻盈地将值从一个寄存器转移到另一个,就像调色板上的颜色流转。

OP_LOADI/OP_LOADF/OP_LOADK/OP_LOADKX: 数字的音符——整数、浮点数、常量和UpValue,一一奏响。

OP_LOADTRUE/OP_LOADFALSE: 布尔值的二元抉择,为逻辑运算注入力量。

OP_LOADNIL/OP_GETUPVALUE/OP_GETTABUP: 无尽的赋值之路,从零开始,直至无穷。

       算术运算交响曲

       接着,我们进入算术运算的篇章,OpCode在此处激荡:

       从简单的OP_ADDK(R[A]:=R[B]+K[C])到OP_SUBK、OP_MULK、OP_MODK,再到OP_POWK和OP_DIVK,每个都是音符间的和谐对话。

       直接数字运算,如OP_ADDI(R[A] = R[B] + sC),界限清晰,无需预存,如音乐中的即兴演奏。

       寄存器间的算术运算,如OP_ADD、网页游戏源码如何运行OP_SUB等,像弦乐四重奏中的协奏。

       位运算与Table操作

       然后,我们步入位运算和Table操作的篇章,它们是程序逻辑的精密齿轮:

OP_BANDKOP_BORK和OP_BXORK,与数字或寄存器进行二进制对话,像编钟的和谐共鸣。

       OP_SHL和OP_SHR,位移的旋律,为数据结构增添深度。

OP_NEWTABLE创生新表,OP_GETI/GETFIELD/GETTABLE查询信息,OP_SETI/SETFIELD/SETTABLE则进行修改,像编排一场数据舞蹈。

       元方法与函数调用

       接下来,元方法与函数调用的乐章,OpCode在其中担任指挥:

MMBINMMBINI和MMBINK,元方法调用的三种旋律,为对象赋予魔法。

OP_CALL和OP_TAILCALL,函数调用的起始与结束,像指挥家的挥棒和收棒。

       OP_VARARGPREP和OP_VARARG,处理可变参数,为函数调用增添变奏。

       跳转与控制流

       最后,我们来到指令的跳跃和控制流部分,OP_JMP如同指挥棒,引导程序的旋律:

       OP_JMP的精确跳跃,如同乐章的节奏变化,控制程序的进程。

       在Lua 5.4中,goto的加入,让程序的流程更加灵活。

       等式判断与循环

       等式判断与循环的OpCode,如同交响乐的高潮,丰富而有力:

       OP_EQ、OP_LT、OP_LE、好搭虚拟试衣 源码OP_GTI、OP_GEI,比较与判断,赋予逻辑深度。

       OP_TEST和OP_TESTSET,条件判断与赋值的巧妙结合。

       OP_FORPREP和OP_TFORPREP,循环的启动与准备,OP_FORLOOP和OP_TFORCALL,执行旋律的反复。

       杂项OpCode的精彩点缀

       最后,8个杂项OpCode为乐章画上完满的句号:

OP_UNM:数值取负,反转音符的旋律。

OP_BNOT:位取反,逻辑的翻转。

OP_NOT:条件取反,为逻辑增添复杂性。

OP_LEN:求对象长度,探索数据的深度。

OP_CONCAT:字符串拼接,连接旋律的片段。

OP_SETLIST:创建列表,初始化的序曲。

       深入理解Lua5.4的OpCode,就像欣赏一场丰富的音乐盛宴,每一个音符都蕴含着程序的智慧与力量。让我们沉浸在这奇妙的虚拟机世界,继续探索更深层次的编程奥秘。祝你乐在其中,收获满满!

《Lua5.4 源码剖析——基本数据类型 之 数字类型》

       数字类型在编程中分为整数和浮点数两种。在Lua语言的5.3版本之前,所有数字都被底层实现为浮点数,整数的概念并未独立出来,而是通过浮点数的IEEE表示法进行表示与数据存储。这样,在进行整数运算时,可能会在多次运算后累积产生出意外的浮点误差。因此,从Lua5.3版本开始,Lua引入了对整数的支持,使其不再依赖于浮点数进行表示,canvas推箱子游戏源码并且支持位运算等整数运算操作符。

       在Lua语言中,每个基础对象需要存储其类型标识,这个标识在源码《lua.h》中定义为tt,数字类型的tt枚举值为LUA_TNUMBER(对应数字3)。由于数字类型分为整型和浮点型,它们通过类型变体来区分。在源码《lobject.h》中,类型变体LUA_VNUMINT表示整型,而LUA_VNUMFLT表示浮点型。

       数字类型在TValue中定义了Value字段,这个字段包含i和n两个字段,用于分别存储整型和浮点型的数值。在历史原因的影响下,lua_Number并不是指所有数字类型,而是专门指浮点类型;lua_Integer则专门指整型。因此,设置整数或浮点数时,需要先设置Value字段中的n字段(整型)或i字段(浮点型),然后使用settt_宏设置type tag(tt)字段为对应值LUA_VNUMFLT或LUA_VNUMINT。

       在底层,数字类型的数据类型具体表现为lua_Integer和lua_Number。在源码《lua.h》中声明,lua_Number为LUA_NUMBER,lua_Integer为LUA_INTEGER。深入学习它们的定义,可以看到整型有int、long、long long三种类型,浮点型有float、double、long double三种类型。Lua5.4的默认配置中,整型使用long long类型,浮点型使用double类型。在Windows平台上,整型使用__int类型。

       至此,数字类型的讲解就告一段落。希望本文对理解Lua语言中的数字类型有所帮助。

《Lua5.4 源码剖析——基本数据类型 之 布尔类型》

       《Lua5.4 源码剖析——基本数据类型 之 布尔类型》

       Lua的基本数据类型中,布尔类型是最简单的一种。在Lua中,尽管通常认为布尔类型只有true和false两种值,但实际上,其在源码中的实现更为精细。Lua使用了TValue这个数据结构来存储所有类型,包括布尔类型。TValue包含了一个lu_byte类型的tt_(类型标记)和Value类型的value_(存储实际数据)。

       tt_字段占用1个字节,其中4个位用于存储基本类型(0-8代表nil到thread),2个位用于表示类型变体,1个位用于垃圾回收标志。布尔类型通过类型变体实现,它被声明为LUA_TBOOLEAN,当tt_的第5位为0时代表false,为1时代表true。

       判断布尔变量的宏定义在《lobject.h》中,而布尔类型的实际值并不存储在value_,而是直接在tt_字段中,以节省内存和判断复杂度。理解了这一点,我们就可以深入理解Lua中布尔类型的内存结构和使用方式。继续关注后续章节,将探讨其他基本数据类型在Lua5.4源码中的实现细节。

Lua如何进行大数运算(附源码)

       在游戏服务器开发中,大数计算是常见但难以避免的问题。一般数值计算在math.maxinteger范围内可直接使用Lua常规计算,超出范围则需大数计算。本文介绍了两种基于Lua的大数计算库:基于Boost的Lua库和基于GNU bc的Lua库lbc。

       基于Boost的Lua库通过安装Lua、Boost和GCC,编译生成Lua直接引用的so库。编译方式有正常编译和捆绑编译。捆绑编译通过make_boost.sh脚本将boost文件复制到boost文件夹,简化编译过程。但需要注意,捆绑编译可能不适用于最新版本的boost。

       基于GNU bc的Lua库lbc由Lua的作者之一编写,具有简单、小巧、易用等特点。编译简单,几乎只需执行make。测试结果显示,lbc在位字符的数字上,执行加减乘除各一次,其时间在1秒以下,符合要求。

       本文还介绍了基于MAPM的Lua库lmapm,其特点与lbc类似。两种库在测试中表现稳定,但lbc提供了详细的位数信息,而lmapm采用科学计数法表示结果。

       最后,本文建议根据实际需求选择合适的大数计算库。对于简单、方便、源码、可修改、可移植和精度要求较高的项目,lbc是不错的选择。同时,还介绍了其他开源的大数计算库,供读者参考。

lua文件的二进制文件如何转换成源代码

       转换方法有使用luac命令、使用lua2c工具、使用反编译工具等。

       1、使用luac命令:luac是Lua编译器,能将Lua程序编译成二进制文件,这些二进制文件可以被加载和执行。

       2、使用lua2c工具:lua2c是一个工具,可以将Lua源代码转换为C源代码。这个工具是用Lua编写的,无需额外的构建、安装。

       3、使用反编译工具:有些工具可以将Lua字节码反编译成Lua源代码,包括LuaDec、unluac和Ljd等。

tolua源码分析(五)lua使用C#的enum

       探讨了C#枚举如何在Lua中注册以及与普通类的注册区别。以官方提供的例子为例,展示了如何将C#的UnityEngine.Space类型的枚举推送到Lua层,并在Lua层面测试了诸如tostring、ToInt、Equals等接口,验证了在Lua层可以进行枚举的相等判断,以及将int转换为枚举或将枚举转换为int的操作。

       在Lua层面表示C#的枚举,例子中在第行和第行将枚举推送到Lua层。由于枚举是值类型,C#层使用了enumMap缓存装箱后的object与枚举的映射关系。注册到Lua层的枚举类使用了EnumMetatable。

       具体来看C#枚举注册到Lua的方法,例如在System_EnumWrap.Register方法中。在Lua层表示C#枚举的方式与普通类相似,但需要注意一些区别。

       例如,当使用__tostring方法时,ToLua.ToObject将Lua栈上的userdata转换为object,通过userdata的index查找C#的object缓存,不会产生垃圾收集(GC)。同样地,ToInt方法中的CheckObject同样在C#的object缓存中查找,执行类型检查,也不会产生GC。

       当比较C#的枚举与int类型时,由于使用了==操作符,这会触发装箱,产生一次GC。因此,在实际使用中应尽量避免在Lua层对C#枚举与number进行比较。而在Lua层直接比较两个C#枚举时,它们在Lua层被视为同一份userdata,因为它们来自于同一个C#缓存,index相同。

       在将Lua栈上的number转换为C#枚举的实例时,IntToEnum方法在C#的UnityEngine_SpaceWrap类中实现。这个方法直接将double转换为int,再转换为UnityEngine.Space类型,避免了GC。在C#层推送到Lua层的枚举时,是从C#的缓存中取到枚举对应的object,然后推送到Lua层,也不会产生GC。

       总结,在Lua使用C#的枚举时,从C#到Lua层的传递不会产生GC,在Lua层进行number与枚举类型之间的转换以及直接比较枚举时不触发GC。然而,当比较枚举与number时,会触发一次GC。针对这一情况,可以进行针对性优化。

       下一节将深入研究在开发中常见的C#委托/事件如何注册到Lua函数的实现。

Lua的编译和反编译

       无论是Unity项目还是Unreal的项目,我通常会使用Lua进行编程。在项目打包阶段,Lua的编译和反编译是不可或缺的步骤。在本文中,我们将探讨如何对Lua代码进行编译与反编译,以及如何利用不同的工具进行操作。

       对于Lua代码的编译,我们通常有两种方法。一种是使用lua脚本直接运行代码,另一种是使用Lua的编译器(如Luac)将源代码转换为Lua字节码。通过使用指令`lua ./TestLua.lua`,我们可以测试代码的正确性。Luac是将Lua源代码编译为Lua字节码的工具,编译成功后,我们可以通过运行编译后的字节码来验证结果,一切顺利。

       另一种流行的Lua编译器是Luajit,它在Unity项目中被广泛使用。使用Luajit可以提升执行速度。如果遇到编译错误,只需确保将`luajit\src\src\jit`文件放在`luajit.exe`的同一目录下的`lua`文件夹中即可。通过直接运行包含测试代码的Lua文件,我们可以确认编译和运行的流程是正确的。

       在对比了两种编译方法后,我们发现它们都有各自的特点和适用场景。Luac适用于简单的脚本或对代码优化要求不高的情况,而Luajit则更适合需要高性能的项目,特别是那些对运行速度有较高要求的场景。

       对于Lua的反编译,最常用的工具是`luadec`。通过将`luadec`工具与Visual Studio项目进行集成,我们能够对编译后的字节码进行反编译,恢复源代码。在尝试反编译后,我们得到了清晰可读的代码,即使在不使用调试信息的情况下,反编译结果也具有一定的可读性。

       对于更复杂的反编译需求,如支持位字节码的反编译,我们遇到了一些挑战。目前,有一个名为`ljd`的工具支持位字节码的反编译,但仅限于位平台。对于位平台的字节码,我们可能需要自行修改`ljd`的Python代码来支持,这是一个需要时间和专业知识的额外工作。尽管如此,对于大部分应用场景,上述工具已经足够满足我们的需求。

       总之,Lua的编译和反编译是Lua项目开发过程中的重要环节。通过选择合适的编译工具和反编译方法,可以有效提升代码的执行效率和调试效率。同时,对于反编译过程,我们应根据实际需求选择合适的工具,并注意其适用的平台和特性。

相关栏目:时尚