1.整车型号及源码是马力马力什么
2.深入理解Linux的epoll机制
3.django哪个好?
整车型号及源码是什么
整车型号是指你的车子的完整的车型代码,比方货车CAP4K2A 可以看出你是源码一汽解放牵引车,马力至少,数据产地是马力马力青岛,而源码由2部分组成,源码底盘号和发动机编号。数据首席省钱赚钱专家源码这2个号就和人的马力马力身份证一样,发动机号和底盘号完全吻合的源码就一辆车,不会重复,数据一般大企业都有车辆档案,马力马力只要底盘号和发动机号完全吻合,源码就能去生产厂家的数据资料库查出你这辆车的出厂状态,年后生产的马力马力霸龙卡车我们可以查到每个螺丝的型号,
深入理解Linux的源码epoll机制
在Linux系统之中有一个核心武器:epoll池,在高并发的数据,高吞吐的IO系统中常常见到epoll的身影。IO多路复用在Go里最核心的是Goroutine,也就是所谓的协程,协程最妙的一个实现就是异步的代码长的跟同步代码一样。比如在Go中,网络IO的read,write看似都是同步代码,其实底下都是异步调用,一般流程是:
write(/*IO参数*/)请求入队等待完成后台loop程序发送网络请求唤醒业务方Go配合协程在网络IO上实现了异步流程的同步代码化。核心就是用epoll池来管理网络fd。
实现形式上,后台的程序只需要1个就可以负责管理多个fd句柄,负责应对所有的业务方的IO请求。这种一对多的IO模式我们就叫做IO多路复用。
多路是指?多个业务方(句柄)并发下来的IO。
复用是指?复用这一个后台处理程序。
站在IO系统设计人员的角度,业务方咱们没办法提要求,因为业务是上帝,只有你服从的份,他们要创建多个fd,那么你就需要负责这些fd的处理,并且最好还要并发起来。
业务方没法提要求,那么只能要求后台loop程序了!
要求什么呢?快!快!快!这就是最核心的要求,处理一定要快,要给每一个fd通道最快的感受,要让每一个fd觉得,你只在给他一个人跑腿。
那有人又问了,那我一个IO请求(比如write)对应一个线程来处理,这样所有的IO不都并发了吗?是可以,但是有瓶颈,线程数一旦多了,性能是反倒会差的。
这里不再对比多线程和IO多路复用实现高并发之间的区别,详细的可以去了解下nginx和redis高并发的秘密。
最朴实的实现方式?我不用任何其他系统调用,能否实现IO多路复用?
可以的。那么写个for循环,每次都尝试IO一下,读/写到了就处理,读/写不到就sleep下。这样我们不就实现了1对多的IO多路复用嘛。
whileTrue:foreach句柄数组{ read/write(fd,/*参数*/)}sleep(1s)慢着,有个问题,上面的汽车源码信息被盗程序可能会被卡死在第三行,使得整个系统不得运行,为什么?
默认情况下,我们没有加任何参数create出的句柄是阻塞类型的。我们读数据的时候,如果数据还没准备好,是会需要等待的,当我们写数据的时候,如果还没准备好,默认也会卡住等待。所以,在上面伪代码第三行是可能被直接卡死,而导致整个线程都得到不到运行。
举个例子,现在有,,这3个句柄,现在读写都没有准备好,只要read/write(,/*参数*/)就会被卡住,但,这两个句柄都准备好了,那遍历句柄数组,,的时候就会卡死在前面,后面,则得不到运行。这不符合我们的预期,因为我们IO多路复用的loop线程是公共服务,不能因为一个fd就直接瘫痪。
那这个问题怎么解决?
只需要把fd都设置成非阻塞模式。这样read/write的时候,如果数据没准备好,返回EAGIN的错误即可,不会卡住线程,从而整个系统就运转起来了。比如上面句柄还未就绪,那么read/write(,/*参数*/)不会阻塞,只会报个EAGIN的错误,这种错误需要特殊处理,然后loop线程可以继续执行,的读写。
以上就是最朴实的IO多路复用的实现了。但是好像在生产环境没见过这种IO多路复用的实现?为什么?
因为还不够高级。for循环每次要定期sleep1s,这个会导致吞吐能力极差,因为很可能在刚好要sleep的时候,所有的fd都准备好IO数据,而这个时候却要硬生生的等待1s,可想而知。。。
那有同学又要质疑了,那for循环里面就不sleep嘛,这样不就能及时处理了吗?
及时是及时了,但是CPU估计要跑飞了。不加sleep,那在没有fd需要处理的时候,估计CPU都要跑到%了。这个也是无法接受的。
纠结了,那sleep吞吐不行,不sleep浪费cpu,怎么办?
这种情况用户态很难有所作为,只能求助内核来提供机制协助来。因为内核才能及时的管理这些通知和调度。
我们再梳理下IO多路复用的修罗论坛官方源码需求和原理。IO多路复用就是1个线程处理多个fd的模式。我们的要求是:这个“1”就要尽可能的快,避免一切无效工作,要把所有的时间都用在处理句柄的IO上,不能有任何空转,sleep的时间浪费。
有没有一种工具,我们把一箩筐的fd放到里面,只要有一个fd能够读写数据,后台loop线程就要立马唤醒,全部马力跑起来。其他时间要把cpu让出去。
能做到吗?能,这种需求只能内核提供机制满足你。
这事Linux内核必须要给个说法?是的,想要不用sleep这种辣眼睛的实现,Linux内核必须出手了,毕竟IO的处理都是内核之中,数据好没好内核最清楚。
内核一口气提供了3种工具select,poll,epoll。
为什么有3种?
历史不断改进,矬->较矬->卧槽、高效的演变而已。
Linux还有其他方式可以实现IO多路复用吗?
好像没有了!
这3种到底是做啥的?
这3种都能够管理fd的可读可写事件,在所有fd不可读不可写无所事事的时候,可以阻塞线程,切走cpu。fd有情况的时候,都要线程能够要能被唤醒。
而这三种方式以epoll池的效率最高。为什么效率最高?
其实很简单,这里不详说,其实无非就是epoll做的无用功最少,select和poll或多或少都要多余的拷贝,盲猜(遍历才知道)fd,所以效率自然就低了。
举个例子,以select和epoll来对比举例,池子里管理了个句柄,loop线程被唤醒的时候,select都是蒙的,都不知道这个fd里谁IO准备好了。这种情况怎么办?只能遍历这个fd,一个个测试。假如只有一个句柄准备好了,那相当于做了1千多倍的无效功。
epoll则不同,从epoll_wait醒来的时候就能精确的拿到就绪的fd数组,不需要任何测试,拿到的就是要处理的。
epoll池原理下面我们看一下epoll池的使用和原理。
epoll涉及的系统调用epoll的使用非常简单,只有下面3个系统调用。
epoll_createepollctlepollwait就这?是的,就这么简单。
epollcreate负责创建一个池子,一个监控和管理句柄fd的池子;
epollctl负责管理这个池子里的fd增、删、改;
epollwait就是负责打盹的,让出CPU调度,但是只要有“事”,立马会从这里唤醒;
epoll高效的阴极泰来指标源码原理Linux下,epoll一直被吹爆,作为高并发IO实现的秘密武器。其中原理其实非常朴实:epoll的实现几乎没有做任何无效功。我们从使用的角度切入来一步步分析下。
首先,epoll的第一步是创建一个池子。这个使用epoll_create来做:
原型:
intepoll_create(intsize);示例:
epollfd=epoll_create();if(epollfd==-1){ perror("epoll_create");exit(EXIT_FAILURE);}这个池子对我们来说是黑盒,这个黑盒是用来装fd的,我们暂不纠结其中细节。我们拿到了一个epollfd,这个epollfd就能唯一代表这个epoll池。
然后,我们就要往这个epoll池里放fd了,这就要用到epoll_ctl了
原型:
intepoll_ctl(intepfd,intop,intfd,structepoll_event*event);示例:
if(epoll_ctl(epollfd,EPOLL_CTL_ADD,,&ev)==-1){ perror("epoll_ctl:listen_sock");exit(EXIT_FAILURE);}上面,我们就把句柄放到这个池子里了,op(EPOLL_CTL_ADD)表明操作是增加、修改、删除,event结构体可以指定监听事件类型,可读、可写。
第一个跟高效相关的问题来了,添加fd进池子也就算了,如果是修改、删除呢?怎么做到时间快?
这里就涉及到你怎么管理fd的数据结构了。
最常见的思路:用list,可以吗?功能上可以,但是性能上拉垮。list的结构来管理元素,时间复杂度都太高O(n),每次要一次次遍历链表才能找到位置。池子越大,性能会越慢。
那有简单高效的数据结构吗?
有,红黑树。Linux内核对于epoll池的内部实现就是用红黑树的结构体来管理这些注册进程来的句柄fd。红黑树是一种平衡二叉树,时间复杂度为O(logn),就算这个池子就算不断的增删改,也能保持非常稳定的查找性能。
现在思考第二个高效的秘密:怎么才能保证数据准备好之后,立马感知呢?
epoll_ctl这里会涉及到一点。秘密就是:回调的设置。在epoll_ctl的内部实现中,除了把句柄结构用红黑树管理,另一个核心步骤就是设置poll回调。
思考来了:poll回调是什么?怎么设置?
先说说file_operations->poll是什么?
在fd篇说过,Linux设计成一切皆是文件的架构,这个不是说说而已,而是随处可见。实现一个文件系统的时候,就要实现这个文件调用,这个结构体用structfile_operations来表示。这个结构体有非常多的函数,我精简了一些,如下:
structfile_operations{ ssize_t(*read)(structfile*,char__user*,size_t,loff_t*);ssize_t(*write)(structfile*,constchar__user*,size_t,loff_t*);__poll_t(*poll)(structfile*,structpoll_table_struct*);int(*open)(structinode*,structfile*);int(*fsync)(structfile*,loff_t,loff_t,intdatasync);//....};你看到了read,write,open,fsync,poll等等,这些都是对文件的定制处理操作,对于文件的操作其实都是在这个框架内实现逻辑而已,比如ext2如果有对read/write做定制化,那么就会是ext2_read,ext2_write,怎么辨识源码后缀ext4就会是ext4_read,ext4_write。在open具体“文件”的时候会赋值对应文件系统的file_operations给到file结构体。
那我们很容易知道read是文件系统定制fd读的行为调用,write是文件系统定制fd写的行为调用,file_operations->poll呢?
这个是定制监听事件的机制实现。通过poll机制让上层能直接告诉底层,我这个fd一旦读写就绪了,请底层硬件(比如网卡)回调的时候自动把这个fd相关的结构体放到指定队列中,并且唤醒操作系统。
举个例子:网卡收发包其实走的异步流程,操作系统把数据丢到一个指定地点,网卡不断的从这个指定地点掏数据处理。请求响应通过中断回调来处理,中断一般拆分成两部分:硬中断和软中断。poll函数就是把这个软中断回来的路上再加点料,只要读写事件触发的时候,就会立马通知到上层,采用这种事件通知的形式就能把浪费的时间窗就完全消失了。
划重点:这个poll事件回调机制则是epoll池高效最核心原理。
划重点:epoll池管理的句柄只能是支持了file_operations->poll的文件fd。换句话说,如果一个“文件”所在的文件系统没有实现poll接口,那么就用不了epoll机制。
第二个问题:poll怎么设置?
在epoll_ctl下来的实现中,有一步是调用vfs_poll这个里面就会有个判断,如果fd所在的文件系统的file_operations实现了poll,那么就会直接调用,如果没有,那么就会报告响应的错误码。
staticinline__poll_tvfs_poll(structfile*file,structpoll_table_struct*pt){ if(unlikely(!file->f_op->poll))returnDEFAULT_POLLMASK;returnfile->f_op->poll(file,pt);}你肯定好奇poll调用里面究竟是实现了什么?
总结概括来说:挂了个钩子,设置了唤醒的回调路径。epoll跟底层对接的回调函数是:ep_poll_callback,这个函数其实很简单,做两件事情:
把事件就绪的fd对应的结构体放到一个特定的队列(就绪队列,readylist);
唤醒epoll,活来啦!
当fd满足可读可写的时候就会经过层层回调,最终调用到这个回调函数,把对应fd的结构体放入就绪队列中,从而把epoll从epoll_wait出唤醒。
这个对应结构体是什么?
结构体叫做epitem,每个注册到epoll池的fd都会对应一个。
就绪队列很高级吗?
就绪队列就简单了,因为没有查找的需求了呀,只要是在就绪队列中的epitem,都是事件就绪的,必须处理的。所以就绪队列就是一个最简单的双指针链表。
小结下:epoll之所以做到了高效,最关键的两点:
内部管理fd使用了高效的红黑树结构管理,做到了增删改之后性能的优化和平衡;
epoll池添加fd的时候,调用file_operations->poll,把这个fd就绪之后的回调路径安排好。通过事件通知的形式,做到最高效的运行;
epoll池核心的两个数据结构:红黑树和就绪列表。红黑树是为了应对用户的增删改需求,就绪列表是fd事件就绪之后放置的特殊地点,epoll池只需要遍历这个就绪链表,就能给用户返回所有已经就绪的fd数组;
哪些fd可以用epoll来管理?再来思考另外一个问题:由于并不是所有的fd对应的文件系统都实现了poll接口,所以自然并不是所有的fd都可以放进epoll池,那么有哪些文件系统的file_operations实现了poll接口?
首先说,类似ext2,ext4,xfs这种常规的文件系统是没有实现的,换句话说,这些你最常见的、真的是文件的文件系统反倒是用不了epoll机制的。
那谁支持呢?
最常见的就是网络套接字:socket。网络也是epoll池最常见的应用地点。Linux下万物皆文件,socket实现了一套socket_file_operations的逻辑(net/socket.c):
staticconststructfile_operationssocket_file_ops={ .read_iter=sock_read_iter,.write_iter=sock_write_iter,.poll=sock_poll,//...};我们看到socket实现了poll调用,所以socketfd是天然可以放到epoll池管理的。
还有吗?
有的,其实Linux下还有两个很典型的fd,常常也会放到epoll池里。
eventfd:eventfd实现非常简单,故名思义就是专门用来做事件通知用的。使用系统调用eventfd创建,这种文件fd无法传输数据,只用来传输事件,常常用于生产消费者模式的事件实现;
timerfd:这是一种定时器fd,使用timerfd_create创建,到时间点触发可读事件;
小结一下:
ext2,ext4,xfs等这种真正的文件系统的fd,无法使用epoll管理;
socketfd,eventfd,timerfd这些实现了poll调用的可以放到epoll池进行管理;
其实,在Linux的模块划分中,eventfd,timerfd,epoll池都是文件系统的一种模块实现。
思考前面我们已经思考了很多知识点,有一些简单有趣的知识点,提示给读者朋友,这里只抛砖引玉。
问题:单核CPU能实现并行吗?
不行。
问题:单线程能实现高并发吗?
可以。
问题:那并发和并行的区别是?
一个看的是时间段内的执行情况,一个看的是时间时刻的执行情况。
问题:单线程如何做到高并发?
IO多路复用呗,今天讲的epoll池就是了。
问题:单线程实现并发的有开源的例子吗?
redis,nginx都是非常好的学习例子。当然还有我们Golang的runtime实现也尽显高并发的设计思想。
总结IO多路复用的原始实现很简单,就是一个1对多的服务模式,一个loop对应处理多个fd;
IO多路复用想要做到真正的高效,必须要内核机制提供。因为IO的处理和完成是在内核,如果内核不帮忙,用户态的程序根本无法精确的抓到处理时机;
fd记得要设置成非阻塞的哦,切记;
epoll池通过高效的内部管理结构,并且结合操作系统提供的poll事件注册机制,实现了高效的fd事件管理,为高并发的IO处理提供了前提条件;
epoll全名eventpoll,在Linux内核下以一个文件系统模块的形式实现,所以有人常说epoll其实本身就是文件系统也是对的;
socketfd,eventfd,timerfd这三种”文件“fd实现了poll接口,所以网络fd,事件fd,定时器fd都可以使用epoll_ctl注册到池子里。我们最常见的就是网络fd的多路复用;
ext2,ext4,xfs这种真正意义的文件系统反倒没有提供poll接口实现,所以不能用epoll池来管理其句柄。那文件就无法使用epoll机制了吗?不是的,有一个库叫做libaio,通过这个库我们可以间接的让文件使用epoll通知事件,以后详说,此处不表;
后记epoll池使用很简洁,但实现不简单。还是那句话,Linux内核帮你包圆了。
今天并没有罗列源码实现,以很小的思考点为题展开,简单讲了一些epoll的思考,以后有机会可以分享下异步IO(aio)和epoll能产生什么火花?Golang是怎样使用epoll池的?敬请期待哦。
原创不易,更多干货,关注:奇伢云存储
django哪个好?
导读:本篇文章首席CTO笔记来给大家介绍有关django哪个好的相关内容,希望对大家有所帮助,一起来看看吧。Python三大web框架分别是什么哪个更好导读目前,Python比较火的三大web框架有Django、Flask和Tornado,要论这三个Web框架哪个更好的话,建议一点,Django帮我们事先搭建了好多,上手会快一些,学习的话可以先从Django学起,然后再学习Flask和Tornado,下面我们就来具体了解一下Python三大web框架的详情。
1、Django
Django是一个开放源代码的Web应用框架,由Python写成。采用了MTV的框架模式,即模型M,模板T和视图V。它最初是被开发来用于管理劳伦斯出版集团旗下的一些以新闻内容为主的网站的,即是CMS(内容管理系统)软件。
2、Flask
Flask是一个使用Python编写的轻量级Web应用框架。其WSGI工具箱采用Werkzeug,模板引擎则使用Jinja2
。Flask使用BSD授权。
Flask也被称为“microframework”,因为它使用简单的核心,用extension
增加其他功能。Flask没有默认使用的数据库、窗体验证工具。
Flask很轻,花很少的成本就能够开发一个简单的网站。非常适合初学者学习。Flask框架学会以后,可以考虑学习插件的使用。例如使用WTForm+
Flask-WTForm来验证表单数据,用SQLAlchemy+Flask-SQLAlchemy来对你的数据库进行控制。
3、Tornado
Tornado是一种Web服务器软件的开源版本。Tornado和现在的主流Web服务器框架(包括大多数Python
的框架)有着明显的区别:它是非阻塞式服务器,而且速度相当快。
得利于其非阻塞的方式和对epoll的运用,Tornado每秒可以处理数以千计的连接,因此Tornado是实时Web服务的一个
理想框架。
关于Python三大web框架的简单介绍,就给大家分享到这里了,当然学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚,希望大家抓紧时间进行学习吧。
Python有哪些好的Web框架1、Django框架
优点:是一个高层次PythonWeb开发框架,特点是开发快速、代码较少、可扩展性强。Django采用MTV(Model、Template、View)模型组织资源,框架功能丰富,模板扩展选择最多。对于专业人员来说,Django是当之无愧的Python排名第一的Web开发框架。
缺点:包括一些轻量级应用不需要的功能模块,不如Flask轻便。过度封装很多类和方法,直接使用比较简单,但改动起来比较困难。相比于C,C++性能,Django性能偏低。模板实现了代码和样式完全分离,不允许模板里出现Python代码,灵活度不够。另外学习曲线也相对陡峭。
2、Flask框架
优点:Flask是一个PythonWeb开发的微框架,严格来说,它仅提供Web服务器支持,不提供全栈开发支持。然而,Flask非常轻量、非常简单,基于它搭建Web系统都以分钟来计时,特别适合小微原型系统的开发。花少时间、产生可用系统,是非常划算的选择。
缺点:对于大型网站开发,需要设计路由映射的规则,否则导致代码混乱。对新手来说,容易使用低质量的代码创建“不良的web应用程序”。
3、Pyramid框架
优点:是一个扩展性很强且灵活的PythonWeb开发框架。上手十分容易,比较适合中等规模且边开发边设计的场景。Pyramid不提供绝对严格的框架定义,根据需求可以扩展开发,对高阶程序员十分友好。
缺点:国内知名度不高,高级用法需要通过阅读源代码获取灵感。默认使用Chameleon模板,灵活度没有成为一个要素。
4、web.py框架
优点:正如其名,web.py是一个采用Python作为开发语言的Web框架,简单且强大。俄罗斯排名第一的Yandex搜索引擎基于这个框架开发,GuidovanRossum认为这是最好的PythonWeb框架,还需要说别的吗?有事实作证、有大牛认可,用起来吧!
缺点:Web.py并未像其他框架一样保持与Python3兼容性的最新状态。这不仅意味着缺乏对异步语法的支持,还意味着缺少对已弃用的函数的错误。此外,目前尚不清楚维护者是否有计划在Python2到达其支持生命周期结束后保持Web.py的最新状态。
5、Tornado框架
优点:Tornado是一个基于异步网络功能库的Web开发框架,因此,它能支持几万个开放连接,Web服务高效稳定。可见,Tornado适合高并发场景下的Web系统,开发过程需要采用Tornado提供的框架,灵活性较差,确定场景后再考虑使用不迟。
缺点:Tornado5.0改进了与Python的本机异步功能的集成。因此不再支持Python3.3.并且Python3.5用户必须使用Python3.5.2或更高版本。Tornado6.0将需要Python3.5及更高版本,并将完全放弃Python2支持。
Django和Flask比较到底哪个比较好用
Flask是小而精的微框架,它不像Django那样大而全,如果使用Flask开发,开发者需要自己决定使用哪个数据库ORM、模块系统、用户认证系统等,需要自己组成。
与采用Django开发对比,开发者在项目开始的时候可能需要花费更多的时间去了解、挑选各个组件,因此Flask开发的灵活度更高,开发者可以根据自己的需要去选择合适的插件。
当然Flask历史相对较短,第三方APP自然没有Django那么全面。
Django和SQLAlchemy,哪个PythonORM更好各有各的好处,如果你在使用Django,那么Django自带的ORM肯定是最合适的。如果你用的是flask等等,那SQLAlchemy无疑是最佳选择。
从个人角度,更喜欢Django的ORM一些。
另外,友情推荐《刘江的博客和教程》。站主致力于分享Python和Django相关的博客和教程,内容全面,深入浅出,探索式讲解,更符合国人口味,值得一看!
web.py与django,那个更好?这个问题在刚学习python框架的时候都遇到过,都不知道要做哪个选择。不知道你要做什么类型的应用。web.py是轻量级没错,django也不见得有多重量。但是做django开发,只要你用到数据库,你会觉得十分方便。至于说要改动的内核多,一般的网络应用程序,绝对不需要你去改什么内核。至少到目前为止,我自己还没有碰到要改内核的情况。话说如果你的水平高到能改内核的程度了,也就不需要再纠结于这个问题了,自己都可以写一个框架了。个人认为django是相当平衡而又好用的。比如说django的Model和Template,你既可以用,也可以不用,没有说一定强迫你用。所以说django是重量级的,估计也是一知半解。做一般的网络应用,强烈建议使用django.
踏板摩托车哪款好踏板摩托车:SYM三阳巡戈Cruisym,标致姜戈Djangoi,豪爵VRHJT-,钱江QJIANGMT。
1、SYM三阳巡戈Cruisym的造型非常酷炫,“大头”的设计能够吸引到不少消费者的目光,骑车出门能够获得比较高的回头率。作为一款尺寸较大的踏板车,该车搭载了CC的排量能够迸发出.3匹的最大马力,理论最高速度可以达到KM/H,能够满足消费者对于速度与激情的追求。
2、标致姜戈Djangoi标致是一个来自于法国的汽车品牌,虽然它的汽车产品在国内市场上并不受欢迎,但是标致摩托车还是有着较高关注度的。标致姜戈Djangoi是一款复古型的踏板车,不仅外观造型个性十足,而且车辆的漆水也非常漂亮,甚至能够跟汽车漆水相媲美,是颜值控的最佳选择。
3、豪爵VRHJT-价格是这款车的一大竞争优势,只需要花不到一万元就能够拥有CC排量的踏板车,这款车的最大马力可以达到9.7匹,峰值扭矩.5N·M/rpm,最高车速可达KM/H,比较可惜的是车辆并没有配备水冷系统和ABS刹车系统,整车的配置相对来说会比较寒碜,但满足代步需求还是没有问题的。
4、钱江QJIANGMT这是一款运动性能出色的城市踏板摩托车,车辆搭载了一款CC排量的单缸水冷发动机,车辆拥有.5匹的最大马力,根据相关测试,车辆0-KM/H加速只需要1秒钟,因此车辆的动力是十分充沛的,日常代步也能给车主带来畅快淋漓的驾驶感受。
5、比亚乔Liberty比亚乔是欧洲规模最大的摩托车制造企业,虽然这个品牌在国内的知名度不大,但产品品质绝对是毋庸置疑的,比亚乔Liberty最早在年就亮相于上海摩托车展,车内配备了自动启停、前后轮ABS等实用配置,发动机能够迸发出.1匹的最大马力。
结语:以上就是首席CTO笔记为大家介绍的关于django哪个好的全部内容了,希望对大家有所帮助,如果你还想了解更多这方面的信息,记得收藏关注本站。