1.JDK成长记7:3张搞懂HashMap底层原理!重写重写
2.idea debug进入HashMap源码时传参不正确?
3.HashMap实现原理一步一步分析(1-put方法源码整体过程)
4.hashmapåºå±å®ç°åç
5.结合源码探究HashMap初始化容量问题
JDK成长记7:3张搞懂HashMap底层原理!重写重写
一句话讲,重写重写 HashMap底层数据结构,重写重写JDK1.7数组+单向链表、重写重写JDK1.8数组+单向链表+红黑树。重写重写云微商源码
在看过了ArrayList、重写重写LinkedList的重写重写底层源码后,相信你对阅读JDK源码已经轻车熟路了。重写重写除了List很多时候你使用最多的重写重写还有Map和Set。接下来我将用三张图和你一起来探索下HashMap的重写重写底层核心原理到底有哪些?
首先你应该知道HashMap的核心方法之一就是put。我们带着如下几个问题来看下图:
如上图所示,重写重写put方法调用了putVal方法,重写重写之后主要脉络是重写重写:
如何计算hash值?
计算hash值的算法就在第一步,对key值进行hashCode()后,重写重写对hashCode的值进行无符号右移位和hashCode值进行了异或操作。为什么这么做呢?其实涉及了很多数学知识,简单的说就是尽可能让高和低位参与运算,可以减少hash值的冲突。
默认容量和扩容阈值是多少?
如上图所示,很明显第二步回调用resize方法,获取到默认容量为,这个在源码里是1<<4得到的,1左移4位得到的。之后由于默认扩容因子是0.,所以两者相乘就是扩容大小阈值*0.=。之后就分配了一个大小为的Node[]数组,作为Key-Value对存放的数据结构。
最后一问题是,如何进行hash寻址的?
hash寻址其实就在数组中找一个位置的意思。用的网站图表源码算法其实也很简单,就是用数组大小和hash值进行n-1&hash运算,这个操作和对hash取模很类似,只不过这样效率更高而已。hash寻址后,就得到了一个位置,可以把key-value的Node元素放入到之前创建好的Node[]数组中了。
当你了解了上面的三个原理后,你还需要掌握如下几个问题:
还是老规矩,看如下图:
当hash值计算一致,比如当hash值都是时,Key-Value对的Node节点还有一个next指针,会以单链表的形式,将冲突的节点挂在数组同样位置。这就是数据结构中所提到解决hash 的冲突方法之一:单链法。当然还有探测法+rehash法有兴趣的人可以回顾《数据结构和算法》相关书籍。
但是当hash冲突严重的时候,单链法会造成原理链接过长,导致HashMap性能下降,因为链表需要逐个遍历性能很差。所以JDK1.8对hash冲突的算法进行了优化。当链表节点数达到8个的时候,会自动转换为红黑树,自平衡的一种二叉树,有很多特点,比如区分红和黑节点等,具体大家可以看小灰算法图解。红黑树的遍历效率是O(logn)肯定比单链表的O(n)要好很多。
总结一句话就是,hash冲突使用单链表法+红黑树来解决的。
上面的加速齿轮源码图,核心脉络是四步,源码具体的就不粘出来了。当put一个之后,map的size达到扩容阈值,就会触发rehash。你可以看到如下具体思路:
情况1:如果数组位置只有一个值:使用新的容量进行rehash,即e.hash & (newCap - 1)
情况2:如果数组位置有链表,根据 e.hash & oldCap == 0进行判断,结果为0的使用原位置,否则使用index + oldCap位置,放入元素形成新链表,这里不会和情况1新的容量进行rehash与运算了,index + oldCap这样更省性能。
情况3:如果数组位置有红黑树,根据split方法,同样根据 e.hash & oldCap == 0进行树节点个数统计,如果个数小于6,将树的结果恢复为普通Node,否则使用index + oldCap,调整红黑树位置,这里不会和新的容量进行rehash与运算了,index + oldCap这样更省性能。
你有兴趣的话,可以分别画一下这三种情况的图。这里给大家一个图,假设都出发了以上三种情况结果如下所示:
上面源码核心脉络,3个if主要是校验了一堆,没做什么事情,之后赋值了扩容因子,不传递使用默认值0.,扩容阈值threshold通过tableSizeFor(initialCapacity);进行计算。空间出售源码注意这里只是计算了扩容阈值,没有初始化数组。代码如下:
竟然不是大小*扩容因子?
n |= n >>> 1这句话,是在干什么?n |= n >>> 1等价于n = n | n >>>1; 而|表示位运算中的或,n>>>1表示无符号右移1位。遇到这种情况,之前你应该学到了,如果碰见复杂逻辑和算法方法就是画图或者举例子。这里你就可以举个例子:假设现在指定的容量大小是,n=cap-1=,那么计算过程应该如下:
n是int类型,java中一般是4个字节,位。所以的二进制: 。
最后n+1=,方法返回,赋值给threshold=。再次注意这里只是计算了扩容阈值,没有初始化数组。
为什么这么做呢?一句话,为了提高hash寻址和扩容计算的的效率。
因为无论扩容计算还是寻址计算,都是二进制的位运算,效率很快。另外之前你还记得取余(%)操作中如果除数是2的幂次方则等同于与其除数减一的与(&)操作。即 hash%size = hash & (size-1)。这个前提条件是除数是2的幂次方。
你可以再回顾下resize代码,看看指定了map容量,第一次put会发生什么。会将扩容阈值threshold,dedecms 营销源码这样在第一次put的时候就会调用newCap = oldThr;使得创建一个容量为threshold的数组,之后从而会计算新的扩容阈值newThr为newCap*0.=*0.=。也就是说map到了个元素就会进行扩容。
除了今天知识,技能的成长,给大家带来一个金句甜点,结束我今天的分享:坚持的三个秘诀之一目标化。
坚持的秘诀除了上一节提到的视觉化,第二个秘诀就是目标化。顾名思义,就是需要给自己定立一个目标。这里要提到的是你的目标不要定的太高了。就比如你想要增加肌肉,给自己定了一个目标,每天5组,每次个俯卧撑,你看到自己胖的身形或者海报,很有刺激,结果开始前两天非常厉害,干劲十足,特别奥利给。但是第三天,你想到要个俯卧撑,你就不想起床,就算起来,可能也会把自己撅死过去......其实你的目标不要一下子定的太大,要从微习惯开始,比如我媳妇从来没有做过俯卧撑,就让她每天从1个开始,不能多,我就怕她收不住,做多了。一开始其实从习惯开始,先变成习惯,再开始慢慢加量。量太大养不成习惯,量小才能养成习惯。很容易做到才能养成,你想想是不是这个道理?
所以,坚持的第二个秘诀就是定一个目标,可以通过小量目标,养成微习惯。比如每天你可以读五分钟书或者5分钟成长记,不要多,我想超过你也会睡着了的.....
最后,大家可以在阅读完源码后,在茶余饭后的时候问问同事或同学,你也可以分享下,讲给他听听。
idea debug进入HashMap源码时传参不正确?
我测试了下面的代码:分别在这四个位置打了断点以监控程序的运行情况,debug后,进入第一次断点的位置为:
与题主说的情况一致,而没有进入我的第一个断点进行输出,而后F9:
发现还是在put文件,经多次F9之后,可以看出来,其实java的jvm在启动的时候,在底层也自行调用的put方法,将jvm所需要的一些动态库、jar包put到某个map之中,具体是哪个map看不出来。要等到jvm底层将所有东西准备好后,才进行main函数。
jvm准备需要put多少次我就不数了,现在我先把put的断点取消,让程序debug到我的第一个断点处:
这个时候将put方法打上断点,F9发现:
奇怪的key值增加了,它将我的classes编译目录丢进去了,继续F9,和上一步差不多,再再次F9,终于来了:
继续F9,终于到达了我的第二个断点:
继续F9,这次没有put奇怪的东西了:
继续:
最后:
然后程序退出:
综上,jvm在启动的时候会在程序背后隐式地将一些配置啊什么的通过put方法放到某些地方,不用关心,你遇到的情况是正常的也是正确的
HashMap实现原理一步一步分析(1-put方法源码整体过程)
本文分享了HashMap内部的实现原理,重点解析了哈希(hash)、散列表(hash table)、哈希码(hashcode)以及hashCode()方法等基本概念。
哈希(hash)是将任意长度的输入通过散列算法转换为固定长度输出的过程,建立一一对应关系。常见算法包括MD5加密和ASCII码表。
散列表(hash table)是一种数据结构,通过关键码值映射到表中特定位置进行快速访问。
哈希码(hashcode)是散列表中对象的存储位置标识,用于查找效率。
Object类中的hashCode()方法用于获取对象的哈希码值,以在散列存储结构中确定对象存储地址。
在存储字母时,使用哈希码值对数组大小取模以适应存储范围,防止哈希碰撞。
HashMap在JDK1.7中使用数组+链表结构,而JDK1.8引入了红黑树以优化性能。
HashMap内部数据结构包含数组和Entry对象,数组用于存储Entry对象,Entry对象用于存储键值对。
在put方法中,首先判断数组是否为空并初始化,然后计算键的哈希码值对数组长度取模,用于定位存储位置。如果发生哈希碰撞,使用链表解决。
本文详细介绍了HashMap的存储机制,包括数组+链表的实现方式,以及如何处理哈希碰撞。后续文章将继续深入探讨HashMap的其他特性,如数组长度的优化、多线程环境下的性能优化和红黑树的引入。
hashmapåºå±å®ç°åç
hashmapåºå±å®ç°åçæ¯SortedMapæ¥å£è½å¤æå®ä¿åçè®°å½æ ¹æ®é®æåºï¼é»è®¤æ¯æé®å¼çååºæåºï¼ä¹å¯ä»¥æå®æåºçæ¯è¾å¨ï¼å½ç¨IteratoréåTreeMapæ¶ï¼å¾å°çè®°å½æ¯æè¿åºçãå¦æ使ç¨æåºçæ å°ï¼å»ºè®®ä½¿ç¨TreeMapãå¨ä½¿ç¨TreeMapæ¶ï¼keyå¿ é¡»å®ç°Comparableæ¥å£æè å¨æé TreeMapä¼ å ¥èªå®ä¹çComparatorï¼å¦åä¼å¨è¿è¡æ¶æåºjava.lang.ClassCastExceptionç±»åçå¼å¸¸ã
Hashtableæ¯éçç±»ï¼å¾å¤æ å°ç常ç¨åè½ä¸HashMap类似ï¼ä¸åçæ¯å®æ¿èªDictionaryç±»ï¼å¹¶ä¸æ¯çº¿ç¨å®å ¨çï¼ä»»ä¸æ¶é´åªæä¸ä¸ªçº¿ç¨è½åHashtable
ä»ç»æå®ç°æ¥è®²ï¼HashMapæ¯ï¼æ°ç»+é¾è¡¨+红é»æ ï¼JDK1.8å¢å äºçº¢é»æ é¨åï¼å®ç°çã
æ©å±èµæ
ä»æºç å¯ç¥ï¼HashMapç±»ä¸æä¸ä¸ªé常éè¦çå段ï¼å°±æ¯ Node[] tableï¼å³åå¸æ¡¶æ°ç»ãNodeæ¯HashMapçä¸ä¸ªå é¨ç±»ï¼å®ç°äºMap.Entryæ¥å£ï¼æ¬è´¨æ¯å°±æ¯ä¸ä¸ªæ å°(é®å¼å¯¹)ï¼é¤äºKï¼Vï¼è¿å å«hashånextã
HashMapå°±æ¯ä½¿ç¨åå¸è¡¨æ¥åå¨çãåå¸è¡¨ä¸ºè§£å³å²çªï¼éç¨é¾å°åæ³æ¥è§£å³é®é¢ï¼é¾å°åæ³ï¼ç®åæ¥è¯´ï¼å°±æ¯æ°ç»å é¾è¡¨çç»åãå¨æ¯ä¸ªæ°ç»å ç´ ä¸é½ä¸ä¸ªé¾è¡¨ç»æï¼å½æ°æ®è¢«Hashåï¼å¾å°æ°ç»ä¸æ ï¼ææ°æ®æ¾å¨å¯¹åºä¸æ å ç´ çé¾è¡¨ä¸ã
å¦æåå¸æ¡¶æ°ç»å¾å¤§ï¼å³ä½¿è¾å·®çHashç®æ³ä¹ä¼æ¯è¾åæ£ï¼å¦æåå¸æ¡¶æ°ç»æ°ç»å¾å°ï¼å³ä½¿å¥½çHashç®æ³ä¹ä¼åºç°è¾å¤ç¢°æï¼æ以就éè¦å¨ç©ºé´ææ¬åæ¶é´ææ¬ä¹é´æè¡¡ï¼å ¶å®å°±æ¯å¨æ ¹æ®å®é æ åµç¡®å®åå¸æ¡¶æ°ç»ç大å°ï¼å¹¶å¨æ¤åºç¡ä¸è®¾è®¡å¥½çhashç®æ³åå°Hash碰æã
结合源码探究HashMap初始化容量问题
探究HashMap初始化容量问题
在深入研究HashMap源码时,有一个问题引人深思:为何在知道需要存储n个键值对时,我们通常会选择初始化容量为capacity = n / 0. + 1?
本文旨在解答这一疑惑,适合具备一定HashMap基础知识的读者。请在阅读前,思考以下问题:
让我们通过解答这些问题,逐步展开对HashMap初始化容量的深入探讨。
源码探究
让我们从实际代码出发,通过debug逐步解析HashMap的初始化逻辑。
举例:初始化一个容量为9的HashMap。
执行代码后,我们发现初始化容量为,且阈值threshold设置为。
解析
通过debug,我们首先关注到构造方法中的初始化逻辑。注意到,初始化阈值时,实际调用的是`tabliSizeFor(int n)`方法,它返回第一个大于等于n的2的幂。例如,`tabliSizeFor(9)`返回,`tabliSizeFor()`返回,`tabliSizeFor(8)`返回8。
继续解析
在构造方法结束后,我们通过debug继续追踪至`put`方法,直至`putVal`方法。
在`putVal`方法中,我们发现当第一次调用`put`时,table为null,从而触发初始化逻辑。在初始化过程中,关键在于`resize()`方法中对新容量`newCap`的初始化,即等于构造方法中设置的阈值`threshold`()。
阈值更新
在初始化后,我们进一步关注`updateNewThr`的代码逻辑,发现新的阈值被更新为新容量乘以负载因子,即 * 0.。
案例分析
举例:初始化一个容量为8的HashMap。
解答:答案是8,因为`tableSizeFor`方法返回大于等于参数的2的幂,而非严格大于。
扩容问题
举例:当初始化容量为时,放入9个不同的entry是否会引发扩容。
解答:不会,因为扩容条件与阈值有关,当map中存储的键值对数量大于阈值时才触发扩容。根据第一问,初始化容量是,阈值为 * 0. = 9,我们只放了9个,因此不会引起扩容。
容量选择
举例:已知需要存储个键值对,如何选择合适的初始化容量。
解答:初始化容量的目的是减少扩容次数以提高效率并节省空间。选择容量时,应考虑既能防止频繁扩容又能充分利用空间。具体选择取决于实际需求和预期键值对的数量。
总结
通过本文的探讨,我们深入了解了HashMap初始化容量背后的逻辑和原因。希望这些解析能够帮助您更深入地理解HashMap的内部工作原理。如果您对此有任何疑问或不同的见解,欢迎在评论区讨论。
最后,如有帮助,欢迎点赞分享。
2024-11-26 17:52
2024-11-26 17:40
2024-11-26 17:10
2024-11-26 17:08
2024-11-26 17:01
2024-11-26 16:30