1.[3D游戏开发实践] Cocos Cyberpunk 源码解读-目录结构
2.有了源码该如何使用
3.源码细读-深入了解terser-webpack-plugin的源码实现
4.关于Cocos2dx-js游戏的jsc文件解密
[3D游戏开发实践] Cocos Cyberpunk 源码解读-目录结构
在深入解读Cocos Cyberpunk源码之前,首先,分析让我们打开scene-game-start场景,源码启动游戏预览,分析进入游戏场景。源码点击START按钮,分析波段买卖点副图指标源码游戏正式开始。源码漫游摄像机将带你漫游整个场景,分析再次点击START,源码可以进入游戏。分析
在电脑端按ESC键或手机端点击设置按钮,源码查看操作说明。分析接下来,源码让我们浏览Cocos Cyberpunk项目的分析目录结构。在左下角的源码Assets窗口中,我们可以看到项目文件的分层。
首先,animations目录中仅包含用于场景漫游的摄像机动画文件。LightFX目录存储了光照贴图,这些是光照烘焙系统自动生成的,无需手动修改。res目录是整个游戏资源的集中地,包括动画、php源码自学特效、模型、shader、UI、音效等资源。
resources目录则存放动态加载的资源,当前内容较少,随着游戏的完善,资源将会增多。scene目录包含了环境反射探针文件,与场景文件名对应的文件夹存放反射贴图。scene-development目录则包含一些用于单元测试的开发场景。
scripts目录存放所有游戏逻辑脚本,而src目录可能包含项目开发过程中的测试文件。test目录同样是用于测试的,存放的文件与项目无关。scene目录则是游戏主场景,而scene-game-start则为游戏启动场景,进行UI逻辑初始化,并加载游戏主场景。
自定义管线以编辑器扩展的形式存在,可将其移至项目中。zfs源码安装管线对应自定义管线,通过在场景中新建节点并添加pipeline/graph/pipeline-graph.ts组件来查看可视化管线图。实时探针相关组件在反射探针节点上挂载,提供实时更新功能。
反射探针节点上的ReflectionUtils脚本组件实现了实时更新探针的逻辑,适用于需要实时探针的项目。此外,Cocos Cyberpunk还实现了SphereProjection修正,使得反射更符合物体形状。
静态遮挡剔除机制在Cocos Cyberpunk中实现,通过将可见关系预存入空间格子,渲染时直接查表获得渲染列表,极大提升效率。这一部分主要在scene场景中的static-occlusion-culling结点中处理。
机型适配策略在Cocos Cyberpunk中实现,根据设备性能选择渲染效果,确保流畅帧率。处理了不同设备上的效果调整,包括性能开关策略、机型分档策略,主要在href-settings.ts、gpu.ts和gpu-mobiles.ts文件中实现。邮箱激活源码
游戏逻辑方面,Cocos Cyberpunk包含完整的TPS游戏逻辑,init节点包含了特效、UI、对象池等节点,挂载的init.ts脚本组件确保游戏逻辑在主场景加载后持续运行。接下来,我们将对游戏逻辑相关源码进行深入解读。
有了源码该如何使用
1. 将Assets文件夹下的资源(如烂滑资源)拖拽至Unity编辑器中,Unity会自动识别并关联其他相关文件夹。这些文件夹中包含项目设置、Unity支持库以及脚本引用等内容,通常无需对这些进行调整。
2. 源代码系列皮肤是拳头公司创作的一款科幻题材的皮肤。拳头公司还制作了其他科幻系列皮肤,包括源计划系列、未来战士系列、战地机甲系列、霸天系列以及银河魔装机神系列。
源码细读-深入了解terser-webpack-plugin的实现
深入探索 terser-webpack-plugin:代码压缩与优化的秘密</ terser-webpack-plugin 是一款强大的 webpack 插件,它巧妙地融合了 terser 库的功能,旨在为你的bind的源码 JavaScript 代码带来高效且优雅的压缩体验。要开始使用,只需参考官方文档中关于 minify-options</的配置指导。这款插件在 webpack 的 compilation 阶段大展身手,通过 optimizeChunkAssets</钩子实现了异步的代码优化,核心逻辑则隐藏在了名为 optimise</的神秘函数中。 优化艺术</ 在 optimise</函数的舞台,一场资源名的魔术表演正在上演。它首先从 compilation 中获取资源,接着根据 availableNumberOfCores</动态决定是否启用并行模式,创建适当的 Worker</。在这里,pLimit</起到了关键作用,它巧妙地控制并发任务的数量,确保效率与稳定性并存。紧接着,遍历每一个 assetNames,一个个任务被 scheduleTask 准备就绪,等待着执行。 任务分解</ 而每个任务的核心 scheduleTask,就像拆解谜题一般,包含着获取 asset 信息、代码检查、minify 的选择(Worker 或主线程)、新代码生成和缓存更新,以及对资产内容的即时更新。整个过程紧凑而有序,以资源处理和并发控制为核心。 并行力量</ terser-webpack-plugin 的亮点之一就是其 parallel</功能,能根据你的计算机 CPU 核心数动态启动 worker,巧妙地利用了 jest-worker 线程池,优先选择高性能的 worker_threads 模式。它通过私有任务队列和先进先出 (FIFO) 管理机制,确保了多进程处理的高效性和一致性。 代码简化与压缩</ minify 函数的精妙之处在于,它直接调用 terser 库的强大功能,略过不必要的 comments 处理,通过出口 API 实现代码的高效压缩。这个过程既简洁又高效,确保了代码质量的提升。 全面优化流程</ terser-webpack-plugin 的优化流程井然有序:异步注册 optimizeChunkAssets</,开启多线程编译(Worker),并在 minify 阶段,利用 terser 的强大压缩能力对代码进行深度处理。而 v4 版本更是增添了异步优化点,让并行处理更加灵活和高效。关于Cocos2dx-js游戏的jsc文件解密
上期关于Cocos2dx-js游戏的jsc文件解密教程引发了一些疑问,本文将解答一些常见问题。
首先,我们通过CocosCreator开发工具构建并编译一个案例js工程,发现游戏中存在脚本加密选项。构建后,得到一个简单的样本APK。在APK中,我们通过Jadx-gui工具解析Java层源码,关注assets目录下二进制源代码的加载情况。在入口Cocos2dxActivity的onLoadNativeLibraries函数中,我们找到了加载libcocos2djs.so文件的步骤,该文件位于AndroidManifest.xml中。
初步分析显示,加载Assets目录资源的操作不在Java层进行。接着,我们参考“jsc反编译工具编写探索之路”一文,将注意力转移到libcocos2djs.so文件上。在Cocos2dx源码中,我们发现其使用的是xxtea加密和解密算法,与Cocos2dx-lua的加密解密过程类似。
在游戏实例分析部分,我们以两个游戏案例为例进行解密。对于游戏A,通过十六进制编辑器搜索libcocos2djs.so文件中的Cocos Game字符串,未发现相关信息。使用IDA分析工具对libcocos2djs.so进行深入研究,发现导出函数名清晰,没有添加额外的安全手段。通过搜索xxtea / key相关函数,我们找到了几个相关函数。在jsb_set_xxtea_key函数中,我们尝试直接设置key值,并发现一个可疑的参数v,用于解密jsc文件。通过回溯该函数的调用路径,我们成功获取了Key值,并成功解密游戏文件。
对于游戏B,虽然Key值不像游戏A那样明文显示,但通过搜索附近的字符串,我们发现可疑的Key值与常规的Cocos Game字符串共存。尝试使用此Key值解密游戏文件,同样取得了成功。对比游戏A和游戏B的关键代码,我们发现密匙都在applicationDidFinishLaunching函数内部体现。此函数在Cocos2d-x应用入口中,当应用环境加载完成时回调。理解CocosCreator构建项目的过程后,我们知道游戏应用环境加载完毕后,该函数内部将Key值传入解密函数中,解密函数将jsc文件转换为js文件,并拷贝到内存中,游戏开始调用js文件,进入游戏界面。
在其他关键函数的分析中,我们注意到在xxtea_decrypt函数中存在memcpy和memset操作,表明在进行内存拷贝数据。通过CocosCreator源代码jsb_global.cpp文件,我们得知传入xxtea_decrypt函数的第三个参数即为解密的Key值。因此,我们可以通过Hook libcocos2djs.so文件加载时的xxtea_decrypt函数来获取Key值。使用Frida框架编写简单的js脚本进行Hook操作,可以成功获取Key值。在获取Key值后,可以参照CocosCreator源代码实现解密逻辑,或者利用封装好的解密程序进行文件解密。
最后,对于解密工具的选择,我们推荐使用一些已封装的加解密程序,例如jsc解密v1.,它能够满足当前Cocos2dx版本的文件加解密需求,并提供较为简单的操作方法。同时,欢迎各位分享自己的解密方法和见解,共同推动社区的发展。