1.Ray 源码解析(一):任务的任务任务状态转移和组织形式
2.Vue3之事件循环、nextTick与源码解析
3.Envoy源码分析之Dispatcher
4.技术人生阅读源码——Quartz源码分析之任务的进度进度调度和执行
5.ListenableFuture源码解析
6.如何实现定时任务- Java Timer/TimerTask 源码解析
Ray 源码解析(一):任务的状态转移和组织形式
Ray源码解析系列的第一篇着重于任务的状态管理和组织形式。Ray的源码源码核心设计在于其细粒度、高吞吐的任务任务任务调度,依赖于共享内存的进度进度Plasma存储输入和输出,以及Redis的源码源码yum源码大全GCS来管理所有状态,实现去中心化的任务任务调度。任务分为无状态的进度进度Task和有状态的Actor Method,后者包括Actor的源码源码构造函数和成员函数。
Ray支持显式指定任务的任务任务资源约束,通过ResourcesSet量化节点资源,进度进度用于分配和回收。源码源码在调度时,任务任务需找到满足任务资源要求的进度进度节点。由于Task输入在分布式存储中,源码源码调度后需要传输依赖。对于Actor Method,其与Actor绑定,会直接调度到对应的节点。
状态变化如任务状态转移、资源依赖等信息,都存储在GCS中。任务状态更改需更新GCS,失联或宕机时,根据GCS中的状态信息重试任务。通过GCS事件订阅驱动任务状态变化。
文章主要讲述了任务状态的组织方式,如任务队列(TaskQueue)和调度队列(SchedulingQueue)的运作,以及状态转移图和状态枚举类的定义。例如,TaskQueue负责任务的增删查改,其中ReadyQueue通过资源映射优化调度决策。此外,mixdj源码程序文中还解释了一些关键概念,如Task Required Resources、Task argument、Object、Object Store、Node/Machine等。
后续文章将深入探讨调度策略和资源管理。让我们期待下篇的精彩内容。
Vue3之事件循环、nextTick与源码解析
事件循环是JavaScript单线程执行的核心机制,确保了同步任务与异步任务能有序执行。同步任务按顺序执行,而异步任务则分为宏任务和微任务。宏任务包括setTimeout、setInterval、整体代码、ajax、postMessage、交互事件等,微任务则包括Promise.then、catch、finally、MutationObserver、process.nextTick(Node环境下)。
事件循环机制确保了同步任务先执行,宏任务和微任务则交替执行,形成事件循环的周期。此过程确保了JavaScript代码的流畅执行,避免了因耗时任务阻塞主线程导致的卡顿。
在Vue3中,nextTick功能用于处理异步更新DOM问题。它允许开发者在DOM更新之前执行异步代码,卡牌 源码确保DOM的正确渲染。有以下两种使用方式:一种是直接传入回调函数,另一种是通过async和await实现。当对数据进行操作后,如果观察到DOM没有更新,原因在于Vue3中数据响应式是同步的,而DOM更新是异步的。
为解决此问题,可以使用nextTick将同步代码转化为异步代码,确保在浏览器的下一次事件循环中执行DOM更新。在Vue3源代码中,nextTick通过将同步代码包装为Promise,从而转化为异步任务来实现这一功能。
Vue3将DOM更新设置为异步,旨在优化性能。考虑到大量数据变化时,频繁的DOM更新可能导致性能开销过大,异步更新策略降低了这种浪费,提高了应用的响应性和性能效率。
Envoy源码分析之Dispatcher
Dispatcher在Envoy中扮演着核心角色,是EventLoop的实现,负责任务队列、网络事件处理、定时器与信号处理等关键功能。其设计与Libevent库紧密集成,并通过封装与抽象,简化了内存管理。Dispatcher通过EventLoop提供了非阻塞的事件循环机制,支持多种事件类型,如FileEvent、SignalEvent、Timer等,minecraft日夜源码通过继承unique_ptr来管理Libevent的C结构,利用RAII机制自动处理内存。SignalEvent通过初始化与添加事件使事件处于未决状态。Timer事件通过初始化与添加到Dispatcher中实现超时触发机制,确保在超时时执行。Envoy通过封装Libevent的事件类型,实现事件的抽象与统一处理。FileEvent封装了socket套接字相关的事件,支持主动触发与事件类型的设置。Dispatcher内部的任务队列用于调度与处理回调任务,通过post方法投递任务至队列,并通过循环运行这些任务。Envoy还引入了DeferredDeletable接口,允许对象在特定时间点被安全地析构,避免回调时对象已析构导致的野指针问题,同时确保析构操作在Dispatcher生命周期内完成,避免内存泄漏与程序崩溃。通过实现延迟析构机制,Envoy能够在回调执行前确保对象已正确析构,保障了程序的稳定性和安全性。这一设计与任务队列的实现类似,但在对象析构逻辑上有所不同,更专注于解决多线程环境下对象生命周期管理的复杂性。
技术人生阅读源码——Quartz源码分析之任务的调度和执行
Quartz源码分析:任务调度与执行剖析
Quartz的调度器实例化时启动了调度线程QuartzSchedulerThread,它负责触发到达指定时间的任务。该线程通过`run`方法实现调度流程,包含三个主要阶段:获取到达触发时间的triggers、触发triggers、执行triggers对应的jobs。
获取到达触发时间的triggers阶段,通过`JobStore`接口的`acquireNextTriggers`方法获取,由`RAMJobStore`实现具体逻辑。sar命令源码触发triggers阶段,调用`triggersFired`方法通知`JobStore`触发triggers,处理包括更新trigger状态与保存触发过程相关数据等操作。执行triggers对应jobs阶段,真正执行job任务,先构造job执行环境,然后在子线程中执行job。
job执行环境通过`JobRunShell`提供,确保安全执行job,捕获异常,并在任务完成后根据`completion code`更新trigger。job执行环境包含job对象、trigger对象、触发时间、上一次触发时间与下一次触发时间等数据。Quartz通过线程池提供多线程服务,使用`SimpleThreadPool`实例化`WorkerThread`来执行job任务,最终调用`Job`的`execute`方法实现业务逻辑。
综上所述,Quartz通过精心设计的线程调度与执行流程,确保了任务的高效与稳定执行,展示了其强大的任务管理能力。
ListenableFuture源码解析
ListenableFuture 是 spring 中对 JDK Future 接口的扩展,主要应用于解决在提交线程池的任务拿到 Future 后在 get 方法调用时会阻塞的问题。通过使用 ListenableFuture,可以向其注册回调函数(监听器),当任务完成时,触发回调。Promise 在 Netty 中也实现了类似的功能,用于处理类似 Future 的场景。
实现 ListenableFuture 的关键在于 FutureTask 的源码解析。FutureTask 是实现 Future 接口的基础类,ListenableFutureTask 在其基础上做了扩展。其主要功能是在任务提交后,当调用 get 方法时能够阻塞当前业务线程,直到任务完成时唤醒。
FutureTask 通过在内部实现一个轻量级的 Treiber stack 数据结构来管理等待任务完成的线程。这个数据结构由 WaitNode 节点组成,每个节点代表一个等待的线程。当业务线程调用 get 方法时,会将自己插入到 WaitNode 栈中,并且在插入的同时让当前线程进入等待状态。在任务执行完成后,会遍历 WaitNode 栈,唤醒等待的线程。
为了确保并发安全,FutureTask 使用 CAS(Compare and Swap)操作来管理 WaitNode 栈。每个新插入的节点都会使用 CAS 操作与栈顶节点进行比较,并在满足条件时更新栈顶。这一过程保证了插入操作的原子性,防止了并发条件下的数据混乱。同时,插入操作与栈顶节点的更新操作相互交织,确保了数据的一致性和完整性。
在 FutureTask 中,还利用了 LockSupport 类提供的 park 和 unpark 方法来实现线程的等待和唤醒。当线程插入到 WaitNode 栈中后,通过 park 方法将线程阻塞;任务执行完成后,通过 unpark 方法唤醒线程,完成等待与唤醒的流程。
综上所述,ListenableFuture 通过扩展 FutureTask 的功能,实现了任务执行与线程等待的高效管理。通过注册监听器并利用 CAS 操作与 LockSupport 方法,实现了在任务完成时通知回调,解决了异步任务执行时的线程阻塞问题,提高了程序的并发处理能力。
如何实现定时任务- Java Timer/TimerTask 源码解析
日常实现各种服务端系统时,我们一定会有一些定时任务的需求。比如会议提前半小时自动提醒,异步任务定时/周期执行等。那么如何去实现这样的一个定时任务系统呢? Java JDK提供的Timer类就是一个很好的工具,通过简单的API调用,我们就可以实现定时任务。
现在就来看一下java.util.Timer是如何实现这样的定时功能的。
首先,我们来看一下一个使用demo
基本的使用方法:
加入任务的API如下:
可以看到API方法内部都是调用sched方法,其中time参数下一次任务执行时间点,是通过计算得到。period参数为0的话则表示为一次性任务。
那么我们来看一下Timer内部是如何实现调度的。
内部结构
先看一下Timer的组成部分:
Timer有3个重要的模块,分别是 TimerTask, TaskQueue, TimerThread
那么,在加入任务之后,整个Timer是怎么样运行的呢?可以看下面的示意图:
图中所示是简化的逻辑,多个任务加入到TaskQueue中,会自动排序,队首任务一定是当前执行时间最早的任务。TimerThread会有一个一直执行的循环,从TaskQueue取队首任务,判断当前时间是否已经到了任务执行时间点,如果是则执行任务。
工作线程
流程中加了一些锁,用来避免同时加入TimerTask的并发问题。可以看到sched方法的逻辑比较简单,task赋值之后入队,队列会自动按照nextExecutionTime排序(升序,排序的实现原理后面会提到)。
从mainLoop的源码中可以看出,基本的流程如下所示
当发现是周期任务时,会计算下一次任务执行的时间,这个时候有两种计算方式,即前面API中的
优先队列
当从队列中移除任务,或者是修改任务执行时间之后,队列会自动排序。始终保持执行时间最早的任务在队首。 那么这是如何实现的呢?
看一下TaskQueue的源码就清楚了
可以看到其实TaskQueue内部就是基于数组实现了一个最小堆 (balanced binary heap), 堆中元素根据 执行时间nextExecutionTime排序,执行时间最早的任务始终会排在堆顶。这样工作线程每次检查的任务就是当前最早需要执行的任务。堆的初始大小为,有简单的倍增扩容机制。
TimerTask 任务有四种状态:
Timer 还提供了cancel和purge方法
常见应用
Java的Timer广泛被用于实现异步任务系统,在一些开源项目中也很常见, 例如消息队列RocketMQ的 延时消息/消费重试 中的异步逻辑。
上面这段代码是RocketMQ的延时消息投递任务 ScheduleMessageService 的核心逻辑,就是使用了Timer实现的异步定时任务。
不管是实现简单的异步逻辑,还是构建复杂的任务系统,Java的Timer确实是一个方便实用,而且又稳定的工具类。从Timer的实现原理,我们也可以窥见定时系统的一个基础实现:线程循环 + 优先队列。这对于我们自己去设计相关的系统,也会有一定的启发。
深度解析sync WaitGroup源码
waitGroup
waitGroup 是 Go 语言中并发编程中常用的语法之一,主要用于解决并发和等待问题。它是 sync 包下的一个子组件,特别适用于需要协调多个goroutine执行任务的场景。
waitGroup 主要用于解决goroutine间的等待关系。例如,goroutineA需要在等待goroutineB和goroutineC这两个子goroutine执行完毕后,才能执行后续的业务逻辑。通过使用waitGroup,goroutineA在执行任务时,会在检查点等待其他goroutine完成,确保所有任务执行完毕后,goroutineA才能继续进行。
在实现上,waitGroup 通过三个方法来操作:Add、Done 和 Wait。Add方法用于增加计数,Done方法用于减少计数,Wait方法则用于在计数为零时阻塞等待。这些方法通过原子操作实现同步安全。
waitGroup的源码实现相对简洁,主要涉及数据结构设计和原子操作。数据结构包括了一个 noCopy 的辅助字段以及一个复合意义的 state1 字段。state1 字段的组成根据目标平台的不同(位或位)而有所不同。在位环境下,state1的第一个元素是等待线程数,第二个元素是 waitGroup 计数值,第三个元素是信号量。而在位环境下,如果 state1 的地址不是位对齐的,那么 state1 的第一个元素是信号量,后两个元素分别是等待线程数和计数值。
waitGroup 的核心方法 Add 和 Wait 的实现原理如下:
Add方法通过原子操作增加计数值。当执行 Add 方法时,首先将 delta 参数左移位,然后通过原子操作将其添加到计数值上。需要注意的是,delta 的值可正可负,用于在调用 Done 方法时减少计数值。
Done方法通过调用 Add(-1)来减少计数值。
Wait方法则持续检查 state 值。当计数值为零时,表示所有子goroutine已完成,调用者无需等待。如果计数值大于零,则调用者会变成等待者,加入等待队列,并阻塞自己,直到所有任务执行完毕。
通过使用waitGroup,开发者可以轻松地协调和同步并发任务的执行,确保所有任务按预期顺序完成。这在多goroutine协同工作时,尤其重要。掌握waitGroup的使用和源码实现,将有助于提高并发编程的效率和可维护性。
如果您对并发编程感兴趣,希望持续关注相关技术更新,请通过微信搜索「迈莫coding」,第一时间获取更多深度解析和实战指南。