本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【源码神偷】【溯源码鱼胶批发】【追星小程序源码】datax同步源码更改_datax数据同步原理

2024-11-14 14:08:25 来源:焦点 分类:焦点

1.如何更改 datax 以支持hive 的同同步 DECIMAL 数据类型?
2.DataX安装部署
3.工具Datax的基本概念(初识ETL工具)
4.如何评价datax的应用?
5.Datax二次开发支持增量更新
6.SeaTunnel连接器V1到V2的架构演进与探究

datax同步源码更改_datax数据同步原理

如何更改 datax 以支持hive 的 DECIMAL 数据类型?

       在处理数据时,我们经常需要将数据从一种数据类型转换为另一种数据类型。步源在数据迁移任务中,码更如果涉及到使用datax进行数据迁移,数据且源数据或目标数据中出现了Hive的原理DECIMAL数据类型,那么如何确保数据迁移的同同步源码神偷准确性和完整性就成为了一个关键问题。本文将详细介绍如何更改datax以支持Hive的步源DECIMAL数据类型。

       在JAVA中,码更主要使用float/double和BigDecimal来存储小数。数据其中,原理float和double在不需要完全精确的同同步计算结果的场景下,可以提供较高的步源运算效率,但当涉及到金融等场景需要精确计算时,码更必须使用BigDecimal。数据

       Hive支持多种数字类型数据,原理如FLOAT、DOUBLE、DECIMAL和NUMERIC。DECIMAL数据类型是后加入的,允许设置精度和标度,适用于需要高度精确计算的场景。

       若要使datax支持Hive的DECIMAL数据类型,关键在于修改datax源码,增强其对DECIMAL数据的读取和写入能力。主要通过以下几个步骤:

       1. **修改HDFS Reader**:在处理Hive ORC文件时,需要修改HDFS Reader插件中的相关类和方法,如DFSUtil#transportOneRecord。通过该步骤,确保能正确读取到ORC文件中的DECIMAL字段。datax的Double类型可以通过其内部的rawData字段存储数据的原始内容,支持Java.math.BigDecimal和Java.lang.Double,因此可以实现不修改HDFS Reader代码,直接读取并处理DECIMAL数据的目标。配置作业时,将Hive的DECIMAL字段指定为datax的Double类型,HDFS Reader在底层调用Hive相关API读取ORC文件中的DECIMAL字段,将其隐式转换为Double类型。datax的Double类型支持Java.math.BigDecimal和Java.lang.Double,确保后续写入操作的精度。

       2. **修改HDFS Writer**:为了支持写入数据到Hive ORC文件中的溯源码鱼胶批发DECIMAL字段,同样需要在HDFS Writer插件中进行相应的代码修改。修改后的代码确保能够将datax的Double字段正确写入到Hive ORC文件中的DECIMAL字段。使用方法com.alibaba.datax.common.element.DoubleColumn#asBigDecimal,基于DoubleColumn底层rawData存储的原始数据内容,将字段值转换为合适的外部数据类型。这一过程不会损失数据精度。

       综上所述,通过修改datax的HDFS Reader和Writer插件,实现对Hive DECIMAL数据类型的读取和写入支持,确保数据迁移过程的准确性和完整性,从而满足复杂数据迁移场景的需求。

DataX安装部署

       DataX安装部署涉及文档查阅、工具包下载、解压目录选择、编译源码、创建配置文件、启动DataX等步骤。首先,访问DataX的用户指南文档,获取安装部署的具体信息。文档地址位于 DataX/userGuid.md at master · alibaba/DataX。部署前需满足相关需求。

       选择合适的下载地址获取DataX工具包,直接下载后解压至本地,进入bin目录即可运行同步作业。或下载源码并自行编译。编译步骤包括下载源码、使用maven进行打包。打包成功后,日志会显示DataX包位于指定路径,通常位于 { DataX_source_code_home}/target/datax/,并呈现特定目录结构。

       配置文件创建是关键步骤,文件应采用json格式。使用命令查看配置模板,根据模板内容,手工或借助工具生成所需的json配置文件,确保内容完整、准确。追星小程序源码

       启动DataX前,确保所有依赖环境已经准备就绪。启动DataX后,系统将按照配置文件执行同步作业,同步过程的详细日志记录在控制台输出中。注意查看日志,及时发现并解决问题,以确保数据同步过程顺利无误。

       在实际部署过程中,可能会遇到各种问题,如依赖缺失、配置文件错误、权限问题等。解决问题时,建议仔细检查文档、日志和配置文件,确保每一步操作准确无误。此外,定期更新DataX版本,以获得最新的功能和修复已知问题,提高数据同步的稳定性与效率。

工具Datax的基本概念(初识ETL工具)

       ETL技术的实质是将数据经过抽取、清洗转换之后加载到数据仓库的过程。DataX是由阿里巴巴研发并开源的异构数据源离线同步工具,能实现不同数据源之间的数据同步,包括关系型数据库、NoSQL数据存储、无结构化数据存储、时间序列数据库以及阿里的云数仓数据存储。DataX是阿里云DataWorks数据集成的开源版本,用于在阿里巴巴集团内广泛使用的离线数据同步工具/平台,支持包括MySQL、Oracle、OceanBase、SqlServer、Postgre、HDFS、Hive、ADS、小程序飞艇源码HBase、TableStore(OTS)、MaxCompute(ODPS)、Hologres、DRDS等各种异构数据源之间的高效数据同步。

       DataX采用Framework + plugin的架构,数据同步步骤将数据的读取、写入操作抽象为由Reader/Writer插件处理,纳入整个同步框架。其核心组件包括Job、Task、Channel以及Transformer。

       Job代表数据同步任务;Task代表运行一个单独的同步线程,该线程使用一个Channel作为Reader与Writer的数据传输媒介;数据流转方向为Reader—>Channel—>Writer。

       Transformer模式提供强大的数据转换功能,DataX内置丰富数据转换实现类,用户可根据自身需求扩展数据转换。

       DataX的安装部署可选择直接下载工具包或下载源码自主编译。下载后解压至本地目录即可运行同步作业。自检脚本为:python { YOUR_DATAX_HOME}/bin/datax.py { YOUR_DATAX_HOME}/job/job.json。

       若数据源同步遇到格式不匹配问题,可以修改相应的reader与writer代码,然后maven编译,后续会提供具体源码修改示例。

       DataX的源码可在gitee上找到,以解决github地址在国内可能存在的连接问题。参考网址提供了更多关于ETL工具-Datax的资源。

如何评价datax的应用?

       为了改进datax任务进度信息展示方式,我们计划对源码进行改造,将实时任务进度信息结构化存储在redis服务器中,让前端通过轮询实时从redis中获取进度信息,从而提供给用户更友好的体验。

       在分析datax任务进度信息的打印逻辑时,我们发现这些信息首先被task group汇总收集,然后由job进一步汇总收集。因此,job能够收集并汇总所有任务的进度信息。

       进一步探究,我们了解到JobContainer依赖的如何读取网页源码Scheduler会周期性打印job收集汇总的进度信息。具体实现可见于源码中的com.alibaba.datax.core.job.scheduler.AbstractScheduler#schedule函数,以及com.alibaba.datax.core.statistics.container.communicator.job.StandAloneJobContainerCommunicator#report函数。

       了解了datax的hook机制后,我们能够设计实现从datax实时获取并持久化进度信息至redis的功能。关键在于,我们可以在打印进度信息的时机触发invokeHook方法,通过配置信息和进度信息作为参数,调用自定义实现的Hook类的invoke方法。具体地,我们设计了一个名为RedisReportHook的自定义Hook类,用于将进度信息持久化至redis。

Datax二次开发支持增量更新

       Datax的二次开发支持增量更新功能,这对于处理Oracle和Mysql之间的数据同步特别重要。原版的OracleWriter和MysqlWriter并不支持writeMode配置,这在某些场景下可能会有所限制。

       经过博主们的实践和探索,我们找到了一种有效的解决方法。首先,需要对Datax的源码进行定制,具体步骤如下:

       修改OracleWriter.java文件,移除原有的限制条件。

       接着,对WriterUtil.java进行增强,添加Oracle数据插入时的类型转换处理,以确保数据的正确性。

       另外,关注CommonRdbmsWriter部分,这里的配置实际上底层实现了Oracle的MERGE语句,这个特性使得增量更新得以实现。

       通过这样的定制,Datax现在能够支持Oracle的数据增量更新,为数据同步任务提供了更大的灵活性和效率。

SeaTunnel连接器V1到V2的架构演进与探究

       核心概念

       SeaTunnel设计的核心是利用设计模式中的控制翻转或依赖注入,主要包括以下两点:

       数据处理过程大致分为输入 -> 转换 -> 输出,更复杂的数据处理实质上也是这些行为的组合。

       内核原理

       SeaTunnel将数据处理的各种行为抽象成Plugin,并使用SPI技术进行动态注册,设计思路保证了框架的灵活扩展。在以上理论基础上,数据的转换与处理还需要做统一的抽象,如著名的异构数据源同步工具DataX,也对数据单条记录做了统一抽象。

       SeaTunnel V1架构体系中,由于背靠Spark和Flink两大分布式计算框架,框架已经为我们做好了数据源抽象的工作,Flink的DataStream、Spark的DataFrame已经是对接入数据源的高度抽象。在此基础上,我们只需要在插件中处理这些数据抽象即可。同时,借助Flink和Spark提供的SQL接口,还可以将每次处理完的数据注册成表,方便用SQL进行处理,减少代码的开发量。

       实际上,SeaTunnel的最终目的是自动生成一个Spark或Flink作业,并提交到集群中运行。

       SeaTunnel连接器V1 API解析架构概览

       目前在项目dev分支下,SeaTunnel连接器V1 API所在的模块如图所示:

       seatunnel-api-base

       在基础模块中,有以下代码:

       为了更清晰地理解这些类之间的关系,笔者制作了一张简单的UML类图:

       整个API的组成可以大体分为三部分:构建层接收命令参数构建执行器,执行器初始化上下文,上下文注册插件并启动插件,至此,整个作业开始运行。

       seatunnel-api-spark

       在Spark引擎API层有以下代码:

       同样,笔者整理了一张UML类图来表示它们之间的关系:

       整个流程与Base模块一致,在此不再赘述,有兴趣的读者可以自行查看源码。

       seatunnel-api-flink

       在Flink引擎API层有以下代码:

       同样,笔者整理了一张UML类图来表示它们之间的关系:

       整个流程与Base模块一致,在此不再赘述,有兴趣的读者可以自行查看源码。

       SeaTunnel连接器V1运行原理启动器模块概览

       整个项目的最外层启动类都放在以下模块中:

       与连接器V1有关的模块如下:

       执行流程

       为了更好地理解SeaTunnel V1的启动流程,笔者制作了一张简单的时序图:

       程序最外层的启动由start-seatunnel-${ engine}.sh开始,用户将配置文件从脚本传入,脚本调用org.apache.seatunnel.core.spark.SparkStarter或org.apache.seatunnel.core.flink.FlinkStarter。实际上,这个类只做一个工作:将所有参数拼接成spark-submit或flink命令,然后脚本接收spark-submit或flink命令并提交到集群中。提交到集群中真正执行job的类实际上是org.apache.seatunnel.spark.SeatunnelSpark或org.apache.seatunnel.flink.SeatunnelFlink。读者如果想直接深入了解作业启动核心流程的话,推荐阅读这两个类的源码。

       执行原理SparkFlinkSeaTunnel连接器V2 API解析架构概览

       目前在项目dev分支下,SeaTunnel连接器V2 API所在的模块如图所示:

       数据抽象

       SeaTunnel连接器V2 API在数据层面做了抽象,定义了自己的数据类型,这是与连接器V1最大的不同点。连接器V1使用的是引擎数据抽象的能力,但连接器V2自己提供了这个异构数据源统一的能力。

       在所有的Source连接器和Sink连接器中,处理的都是SeaTunnelRow类型数据,同时SeaTunnel也对内设置了数据类型规范。所有通过Source接入进来的数据会被对应的连接器转化为SeaTunnelRow送到下游。

       API Common

       在API common包下有以下接口的定义:

       在这里,由于篇幅关系,只介绍比较核心的几个接口:

       具体接口中有哪些方法,读者可以自行阅读对应类的源码,在此不再赘述。

       API Source

       在API source包下有以下接口的定义:

       在这里,由于篇幅关系,只介绍比较核心的几个接口:

       API Sink

       在API sink包下有以下接口的定义:

       在这里,由于篇幅关系,只介绍比较核心的几个接口:

       小结

       连接器V2在架构分层上与计算引擎进行解耦,定义了自己的元数据定义以及数据类型定义,在API层和计算引擎层增加了翻译层,将SeaTunnel自定义的数据源通过翻译层接入到引擎中,从而真正实现接口和引擎分离的目的。

       SeaTunnel连接器V2运行原理启动器模块概览

       整个项目的最外层启动类都放在以下模块中:

       与连接器V2有关的模块如下:

       执行流程

       为了更好地理解SeaTunnel V2的启动流程,笔者制作了一张简单的时序图:

       程序最外层的启动由start-seatunnel-${ engine}-new-connector.sh开始,用户根据将配置文件从脚本传入,脚本调用org.apache.seatunnel.core.spark.SparkStarter或org.apache.seatunnel.core.flink.FlinkStarter。实际上,这个类只做一个工作:将所有参数拼接成spark-submit或flink命令,然后脚本接收spark-submit或flink命令并提交到集群中。提交到集群中真正执行job的类实际上是org.apache.seatunnel.spark.SeatunnelSpark或org.apache.seatunnel.flink.SeatunnelFlink。读者如果想直接深入了解作业启动核心流程的话,推荐阅读这两个类的源码,连接器V2和连接器V1的启动流程基本一致。

       SeaTunnel V2 on Spark

       SeaTunnel Source连接器V2将异构数据源接入,生成以SeaTunnelRow为基本单位的数据源,在翻译层实现了Spark DataSource API V2,翻译层使得Spark可以接入以SeaTunnelRow为基本单位的数据源,从而实现无缝接入Spark的目的。

       关于Spark DataSource API V2的详细信息,读者可以参考:/session/apache-spark-data-source-v2。由于这篇文章的主题并不是介绍Spark的特性,所以在此不再赘述。

       SeaTunnel V2 on Flink

       SeaTunnel Source连接器V2将异构数据源接入,生成以SeaTunnelRow为基本单位的数据源,同时在翻译层实现了Flink source function和Flink sink function。翻译层使得Flink可以接入以SeaTunnelRow为基本单位的数据源,从而实现无缝接入Flink的目的。

       关于Flink source Function和Flink sink function的详细信息,读者可以参考:https://nightlies.apache.org/flink/flink-docs-release-1./docs/dev/datastream/sources/#the-data-source-api。由于这篇文章的主题并不是介绍Flink的特性,所以在此不再赘述。

       执行原理

       Source连接器接入数据源为SeaTunnelRow,Translation层转换SeaTunnelRow数据源为各种计算引擎内部的数据源,Sink连接器接收计算引擎内部转换好的SeaTunnelRow数据源并写入到目标数据源中。

       V1 API vs V2 API未来展望

       目前社区正在做的事情:

       未来目标:

       最终目标:成功从Apache孵化器毕业,成为世界一流的诞生于中国的数据集成平台工具

       贡献者招募

       目前社区正在蓬勃向前发展,大量feature需要去开发实现,毕业之路道阻且艰,期待更多的有志之士参与到社区共建,欢迎热爱开源的小伙伴加入SeaTunnel社区,有意者可发邮件至tyrantlucifer@apache.org或微信tyrantlucifer联系我咨询相关事宜,让我们一起用开源点燃璀璨的程序人生。

       成数据集成任务 3. 更多调度平台无缝接入

       最终目标:成功从Apache孵化器毕业,成为世界一流的诞生于中国的数据集成平台工具

       贡献者招募

       目前社区正在蓬勃向前发展,大量feature需要去开发实现,毕业之路道阻且艰,期待更多的有志之士参与到社区共建,欢迎热爱开源的小伙伴加入SeaTunnel社区,有意者可发邮件至tyrantlucifer@apache.org或微信tyrantlucifer联系我咨询相关事宜,让我们一起用开源点燃璀璨的程序人生。

大数据技术之Datax

       分享大数据技术之Datax的使用与特性,旨在解决大数据生产环境中的数据同步需求。Datax是阿里巴巴开源的异构数据源离线同步工具,支持多种数据源之间的数据同步,包括关系型数据库、HDFS、Hive、ODPS、HBase、FTP等。

       Datax的核心设计思路是将复杂的同步链路转变为星型数据链路,作为中间传输载体实现数据同步。采用Framework + plugin架构,将数据源读取和写入抽象为Reader/Writer插件,使得框架负责内部的序列化传输、缓冲、并发、转换等,而数据采集和落地核心操作则由插件执行。

       Datax拥有全面的插件体系,支持主流数据库、NoSQL、大数据计算系统等,提供丰富的数据源参考指南。单个数据同步作业由Job模块管理,启动进程完成整个同步过程。Job模块负责数据清理、子任务切分、TaskGroup管理等,将单一作业拆分为多个Task并行执行。每个Task由TaskGroup启动,执行Reader-Channel-Writer线程完成同步任务。

       Datax快速入门指南提供下载地址和源码地址,需满足前置要求并完成安装。类图展示了Datax的启动流程,包括解析配置、设置参数、启动Engine、初始化reader和writer插件、切分任务、执行任务等步骤。Datax-web是基于Datax开发的分布式数据同步工具,提供用户界面,简化任务配置,支持多种数据源,提供同步进度、日志查看及终止功能,并集成时间、增量同步功能。

       Datax-web的搭建教程可在官网找到,如遇疑问可直接联系作者。Datax与Datax-web结合使用,能够实现大数据采集模块的自动化和高效同步,减少开发成本。

       以上内容仅为Datax技术概览,更多深入细节和实践案例将在后续文章中分享。希望读者在大数据领域取得成就,收获满满。我是脚丫先生,期待与您下期再见。

DataX任务容器

       DataX任务容器涉及的源码分析如下:

       在DataX中,判断容器是否为job或taskGroup类型,这一步骤是通过容器执行源码实现的。DataX提供两种容器类:taskGroupContainer和jobContainer,它们都是抽象类AbstractContainer的实现。

       抽象类AbstractContainer中定义了一个抽象方法start,这个方法在容器启动时被调用。

       任务容器的执行流程如下:当任务容器被启动后,它会按照任务生命周期的每个阶段进行执行。这是单个数据任务的调度过程,通常依赖数据任务调度DAG实现。尽管开源的DataX调度功能较为基础。

相关推荐
一周热点