【程序源码如何转发】【危险节奏源码】【marlin固件 源码】redis源码查询

2025-01-19 03:09:22 来源:php音乐分析源码 分类:百科

1.Redis 码查实现高效有序集合(zset):跳表源码分析
2.Redis7.0源码阅读:哈希表扩容、缩容以及rehash
3.Redis源码解析:一条Redis命令是码查如何执行的?
4.redis7.0源码阅读:Redis中的IO多线程(线程池)
5.redis源码阅读--跳表解析
6.Redis 哨兵模式 - 源码梳理

redis源码查询

Redis 实现高效有序集合(zset):跳表源码分析

       跳表(Skip List)是一种基于随机化的高效数据结构,旨在加速查找操作。码查它通过多层索引来实现快速搜索,码查与平衡树相比,码查插入、码查程序源码如何转发删除和查找操作的码查平均时间复杂度均为O(log n),构建更为简便。码查跳表结构类似链表,码查每个节点不仅存储元素值,码查还包含指向对应层次的码查下一个节点的指针,实现跳跃式访问。码查每一层的码查链表是下一层的子集,形成多级结构,码查优化搜索路径,码查同时保持高效性和简洁性。跳表支持范围查询、插入、删除、查找、合并等高级操作,适用于搜索引擎、缓存、排序等场景。

       在Redis中,有序集合(Sorted Set)正是基于跳表实现的。每个有序集合包含一个跳表,每个节点存储元素的成员值和score值,以及指向其他节点的指针。元素按照score值从小到大排序,使得跳表中节点同样按照此规则排序。跳表通过随机生成多级索引来支持有序集合的高效操作,例如范围查询、排名和集合操作等。Redis选择跳表而非平衡树,是基于其在性能与内存使用之间的良好平衡。

       跳表在Redis的实现涉及多个方面,从结构定义到操作实现。数据结构定义在`server.h`文件中,具体操作实现在`t_zset.c`文件中。节点创建与释放关注于指定key、score和节点的层次(层高)。跳表初始化涉及分配内存并创建头节点,并进行相关初始化。危险节奏源码插入、删除和更新节点涉及节点间复杂但高效的指针操作。查找节点、获取排名和查询score范围则通过逐层比较关键值与节点值来实现。整体结构与操作设计旨在提供高效、灵活的有序集合支持,满足Redis应用中对数据排序和检索需求的高性能要求。

Redis7.0源码阅读:哈希表扩容、缩容以及rehash

       当哈希值相同发生冲突时,Redis 使用链表法解决,将冲突的键值对通过链表连接,但随着数据量增加,冲突加剧,查找效率降低。负载因子衡量冲突程度,负载因子越大,冲突越严重。为优化性能,Redis 需适时扩容,将新增键值对放入新哈希桶,减少冲突。

       扩容发生在 setCommand 部分,其中 dictKeyIndex 获取键值对索引,判断是否需要扩容。_dictExpandIfNeeded 函数执行扩容逻辑,条件包括:不在 rehash 过程中,哈希表初始大小为0时需扩容,或负载因子大于1且允许扩容或负载因子超过阈值。

       扩容大小依据当前键值对数量计算,如哈希表长度为4,实际有9个键值对,扩容至(最小的2的n次幂大于9)。子进程存在时,dict_can_resize 为0,反之为1。fork 子进程用于写时复制,确保持久化操作的稳定性。

       哈希表缩容由 tryResizeHashTables 判断负载因子是否小于0.1,条件满足则重新调整大小。此操作在数据库定时检查,且无子进程时执行。

       rehash 是为解决链式哈希效率问题,通过增加哈希桶数量分散存储,marlin固件 源码减少冲突。dictRehash 函数完成这一任务,移动键值对至新哈希表,使用位运算优化哈希计算。渐进式 rehash 通过分步操作,减少响应时间,适应不同负载情况。定时任务检测服务器空闲时,进行大步挪动哈希桶。

       在 rehash 过程中,数据查询首先在原始哈希表进行,若未找到,则在新哈希表中查找。rehash 完成后,哈希表结构调整,原始表指向新表,新表内容返回原始表,实现 rehash 结果的整合。

       综上所述,Redis 通过哈希表的扩容、缩容以及 rehash 动态调整哈希桶大小,优化查找效率,确保数据存储与检索的高效性。这不仅提高了 Redis 的性能,也为复杂数据存储与管理提供了有力支持。

Redis源码解析:一条Redis命令是如何执行的?

       作者:robinhzhang

       Redis,一个开源内存数据库,凭借其高效能和广泛应用,如缓存、消息队列和会话存储,本文将带你探索其命令执行的底层流程。本文将以源码解析的形式,逐层深入Redis的核心结构和命令执行过程,旨在帮助开发者理解实现细节,提升编程技术和设计意识。

       源码结构概览

       在学习Redis源代码之前,首先要了解其主要的组成部分:redisServer、redisClient、redisDb、redisObject以及aeEventLoop。这些结构体和事件模型构成了Redis的核心架构。

       redisServer:服务端运行的核心结构,包括监听socket、opencv源码RGB数据存储的redisDb列表和客户端连接信息。

       redisClient:客户端连接状态的存储,包括命令处理缓冲区、回复数据列表和数据库句柄。

       redisDb:键值对的数据存储,采用两个哈希表实现渐进式rehash。

       redisObject:存储对象的通用表示,包含引用计数和LRU时间,用于内存管理。

       aeEventLoop:事件循环,管理文件和时间事件的处理。

       核心流程详解

       Redis的执行流程从main函数开始,首先初始化配置和服务器组件,进入主循环处理事件。命令执行流程涉及redis启动、客户端连接、接收命令和返回结果四个步骤:

       启动阶段:创建socket服务器,注册可读事件,进入主循环。

       连接阶段:客户端连接后,接收并处理命令,创建客户端实例。

       命令阶段:客户端发送命令,服务端解析并调用对应的命令处理函数。

       结果阶段:处理命令后,根据协议格式构建回复并写回客户端。

       渐进式rehash与内存管理

       Redis的内存管理采用引用计数法,通过对象的refcount字段控制内存分配和释放。rehash操作在Redis 2.x版本引入,通过逐步迁移键值对,降低对单线程性能的影响。当负载达到阈值,会进行扩容,这涉及新表的创建和键值对的迁移。

       总结

       本文通过Redis源码分析,揭示了其命令执行的细节,包括启动流程、客户端连接、命令处理和结果返回,以及内存管理策略。这将有助于开发者深入理解Redis的工作原理,提升编程效率和设计决策能力。

redis7.0源码阅读:Redis中的tv影视源码IO多线程(线程池)

       Redis服务端处理客户端请求时,采用单线程模型执行逻辑操作,然而读取和写入数据的操作则可在IO多线程模型中进行。在Redis中,命令执行发生在单线程环境中,而数据的读取与写入则通过线程池进行。一个命令从客户端接收,解码成具体命令,根据该命令生成结果后编码并回传至客户端。

       Redis配置文件redis.conf中可设置开启IO多线程。通过设置`io-threads-do-reads yes`开启多线程,同时配置`io-threads 2`来创建两个线程,其中一个是主线程,另一个为IO线程。在网络处理文件networking.c中,`stopThreadedIOIfNeeded`函数会判断当前需要执行的命令数是否超过线程数,若少于线程数,则不开启多线程模式,便于调试。

       要进入IO多线程模式,运行redis-server命令,然后在调试界面设置断点在networking.c的`readQueryFromClient`函数中。使用redis-cli输入命令时,可以观察到两个线程在运行,一个为主线程,另一个为IO线程。

       相关视频推荐帮助理解线程池在Redis中的应用,包括手写线程池及线程池在后端开发中的实际应用。学习资源包括C/C++ Linux服务器开发、后台架构师技术等领域,需要相关资料可加入交流群获取免费分享。

       在Redis中,IO线程池实现中,主要包括以下步骤:

       读取任务的处理通过`postponeClientRead`函数,判断是否启用IO多线程模式,将任务加入到待执行任务队列。

       主线程执行`postponeClientRead`函数,将待读客户端任务加入到读取任务队列。在多线程模式下,任务被添加至队列中,由IO线程后续执行。

       多线程读取IO任务`handleClientsWithPendingReadsUsingThreads`通过解析协议进行数据读取,与写入任务的多线程处理机制相似。

       多线程写入IO任务`handleClientsWithPendingWritesUsingThreads`包括判断是否需要启动IO多线程、负载均衡分配任务到不同IO线程、启动IO子线程执行写入操作、等待IO线程完成写入任务等步骤。负载均衡通过将任务队列中的任务均匀分配至不同的线程消费队列中,实现无锁化操作。

       线程调度部分包含开启和关闭IO线程的功能。在`startThreadedIO`中,每个IO线程持有锁,若主线程释放锁,线程开始工作,IO线程标识设置为活跃状态。而在`stopThreadedIO`中,若主线程获取锁,则IO线程等待并停止,IO线程标识设置为非活跃状态。

redis源码阅读--跳表解析

       跳表是 Redis 中实现 zset 和 set 功能的关键数据结构。通过在链表基础上构建多级索引,跳表有效提升了查找效率,且其实现相较于红黑树更为简洁,无需大量精力来维持树的平衡。跳表节点具有顺序排列的特性,支持范围查询。

       跳表的构成包括头结点、尾节点、长度以及索引层数。每一个节点包含数据 robj、分数 score 用于排序、上一节点指针 prev 用于反向遍历,以及多层索引信息 levels。各层索引 skiplistlevel 包括该层索引中节点指向的下一个节点指针 next 和间隔 span。节点的索引层数通过随机数生成,设计思路为使用第 n 级索引是使用第 n-1 级索引概率的 1/4,最多使用 级索引。使用如此设计可确保即便用到最高层级,所持数据量也足够大,无需担心索引不足。

       跳表按照 score 和 robj 的大小进行排序,因此节点有序,支持范围查找。插入节点时,首先找到新节点可以插入的位置,即比新节点小的最大节点。此过程从最高层索引开始,使用 update 数组记录各层索引中节点的前一节点位置,以及 rank 数组记录 update 节点到 header 的间隔 span。新节点插入后,更新 prev 指针、tail 指针、跳表长度等信息。

       删除节点同样遵循类似的逻辑,先查找节点的前一个节点,然后删除目标节点。在删除过程中,需要检查节点的下一节点是否为待删除数据,并调整节点连接和更新跳表的 level 值。当某层索引中节点的 next 指针变为 nil 时,该层索引已无用,可将 level 减一。最后,更新跳表长度。

       虽然跳表概念看似复杂,但通过理解其多级索引机制,其余操作如范围查询、排名查询等将变得相对简单。在实际应用中,可通过阅读 Redis 源码中的 t_zset.c 和 redis.h 文件,了解跳表的具体实现。然而,更难的是将这些抽象概念转化为清晰、易于理解的文档,绘制图表对于深入理解跳表的逻辑非常有帮助。

Redis 哨兵模式 - 源码梳理

       本文以Redis 7.0.版本为基准,如有不妥之处,敬请指正。

       哨兵模式的代码流程逻辑如下:哨兵节点每秒(主从切换时为1秒)向已知的主节点和从节点发送info命令。接收到主节点的info回复后,解析其中的slave字段信息,进而创建相应的从节点instance。收到从节点的info回复后,解析其中的slave_master_host、slave_master_port、slave_master_link_status、slave_priority、slave_repl_offset、replica_announced等信息(步骤2和sentinelInfoReplyCallback)。

       在sentinel.masters的初始数据中,来自于sentinel.conf中的monitor,利用info命令探测主节点及其所属的从节点。通过订阅__sentinel__:hello频道,获取其他哨兵节点的信息。其中,link->act_ping_time表示最早一次未收到回复的ping请求发送时间,收到回复后其会被重置为0。因此,其不为0时,表示有未收到回复的ping请求。link->last_avail_time表示最近一次收到对ping有效回复的时间,link->last_pong_time表示最近一次收到对ping回复(有效和无效)的时间,link->pc_last_activity表示最近一次收到publish的消息,ri->role_reported_time表示最近一次收到info且回复中role相比于上次发生改变的时间。

       Raft一致性算法

       thesecretlivesofdata.com...

Redis 源码分析字典(dict)

       Redis 的内部字典世界:从哈希表到高效管理的深度解析

       Redis,作为开源的高性能键值存储系统,其内部实现的字典数据结构是其核心组件之一。这个数据结构采用自定义的哈希表——dictEntry,巧妙地存储和管理着键值对。让我们一起深入理解这一强大工具的运作机制。

       首先,Redis的字典是基于哈希表的,通过哈希函数将键转换为数组索引,实现高效查找。dictEntry结构巧妙地封装了键(key)、值(value)以及指向下一个节点的指针,构成了数据存储的基本单元。同时,dict包含一系列操作函数,包括哈希计算、键值复制、比较以及销毁操作,这些函数的指针类型(dictType)和实际数据结构共同构建了其高效性能。

       在字典的管理中,rehash是一个关键概念,它标志着哈希表的重新分布过程。rehash标志是一个计数器,用于跟踪当前哈希表实例的状态,确保在负载过高时进行扩容。当ht_used[0]非零,且满足特定条件(如元素数量超过初始桶数),服务器会触发resize操作,这通常在serverCron定时任务中进行,以避免磁盘I/O竞争。

       rehash过程中,Redis采取渐进式策略,通过dictRehash函数,逐个移动键值对到新哈希表,确保操作的线程安全。为了避免长时间阻塞,这个过程被分散到函数中,并通过serverCron定时任务,以毫秒级的步长进行,确保在无磁盘写操作时进行。

       在处理过期键时,dictRehashMilliseconds()函数扮演重要角色,它在rehash时监控时间消耗,确保性能。rehash过程中,dictAdd负责插入新哈希表,而dictFind和dictDelete则需处理ht_table[0]和ht_table[1]的键值对。

       Redis的默认哈希算法采用SipHash,保证了数据的分布均匀性。在持久化时,负载因子默认设置为5,而rehash后,数据结构会采用迭代器的形式,分为安全和非安全两种,以满足不同场景的需求。

       在实际操作中,如keysCommand,会选择安全模式以避免重复遍历,而在处理大规模数据时,如scan命令,可能需要使用非安全模式,但需注意可能带来的问题。

       总的来说,Redis的字典数据结构是其高效性能的基石,通过精细的哈希管理、rehash策略以及迭代器设计,确保了在高并发和频繁操作下的稳定性和性能。深入理解这些内部细节,对于优化Redis性能和应对复杂应用场景至关重要。

Redis源码阅读(1)——zmalloc

       zmalloc是一个简化内存分配的库,包含以下API函数:

       zmalloc

       zcalloc

       zrealloc

       zfree

       zstrdup

       zmalloc_used_memory

       zmalloc_set_oom_handler

       zmalloc_get_rss

       zmalloc_get_allocator_info

       zmalloc_get_private_dirty

       zmalloc_get_smap_bytes_by_field

       zmalloc_get_memory_size

       zlibc_free

       其中,zmalloc用于分配内存,zcalloc在分配内存的同时初始化为0,zrealloc用于重新分配内存,zfree用于释放内存,zstrdup用于复制字符串并分配内存,zmalloc_used_memory用于获取已分配内存的大小,zmalloc_set_oom_handler用于设置内存溢出处理器,zmalloc_get_rss用于获取当前进程的内存使用量,zmalloc_get_allocator_info用于获取分配器信息,zmalloc_get_private_dirty用于获取私有脏数据,zmalloc_get_smap_bytes_by_field用于获取指定字段的内存使用量,zmalloc_get_memory_size用于获取内存大小,zlibc_free用于释放内存。

       在zmalloc中,宏函数update_zmalloc_stat_alloc用于更新used_memory的值。这个宏函数中的if语句用于补齐分配的内存字节数到sizeof(long),但是我不太理解5.0源码中为什么atomicIncr使用的是__n而不是直接对_n进行操作。测试发现,used_memory的值并未对齐到8,那么if语句的存在意义何在呢?

       同样地,update_zmalloc_stat_free宏函数用于更新已释放内存的统计信息。与update_zmalloc_stat_alloc相比,虽然malloc_usable_size已经返回精确的字节数,但update_zmalloc_stat_alloc为何不直接使用atomicIncr更新used_memory呢?在Unstable分支中,已有开发者对此进行了优化。

Redis 源码剖析 3 -- redisCommand

       Redis 使用 redisCommand 结构体处理命令请求,其内包含一个指向对应处理函数的 proc 指针。redisCommandTable 是一个存储所有 Redis 命令的数组,位于 server.c 文件中。此数组通过 populateCommandTable() 函数填充,该函数将 redisCommandTable 的内容添加到 server.commands 字典,将 Redis 支持的所有命令及其实现整合。

       populateCommandTable() 函数中包含 populateCommandTableParseFlags() 子函数,用于将 sflags 字符串转换为对应的 flags 值。lookupCommand*() 函数族负责从 server.commands 中查找相应的命令。

本文地址:http://5o.net.cn/news/86c152198392.html 欢迎转发