【android 二维码扫描源码】【图片视频源码】【代源码查询】腾讯新闻源码_腾讯新闻源码怎么获取

时间:2024-11-08 11:30:41 编辑:Y的源码 来源:换手率选股公式源码通达信

1.腾讯T2I-adapter源码分析(3)-训练源码分析
2.腾讯T2I-adapter源码分析(1)-运行源码跑训练
3.Python爬虫腾讯视频m3u8格式分析爬取(附源码,腾讯腾讯高清无水印)
4.怎么查看腾讯视频网的新闻新闻视频代码

腾讯新闻源码_腾讯新闻源码怎么获取

腾讯T2I-adapter源码分析(3)-训练源码分析

       随着stable-diffusion和midjourney等AI技术展现令人惊叹的艺术创作,人们对AI可控绘图的源码源码追求日益高涨。为提升AI图像生成的腾讯腾讯可控性,Controlnet和T2I-adapter等解决方案应运而生。新闻新闻系列文章将从T2I-adapter的源码源码android 二维码扫描源码源码出发,深入剖析其训练部分的腾讯腾讯实现原理。

       本篇我们将聚焦于训练源码的新闻新闻解析,通过代码结构的源码源码梳理,了解T2I-Adapter的腾讯腾讯训练流程。

       训练代码的新闻新闻运行涉及数据处理、模型加载、源码源码优化器设置以及实际训练过程。腾讯腾讯在第一部分,新闻新闻我们首先设置参数并加载数据,源码源码如DepthDataset,它从txt文件中读取、对应的深度图和文本描述。

       在模型加载阶段,我们区分了stable-diffusion模型和adapter。stable-diffusion模型加载时,其配置与推理阶段有所差异,如增加调度器参数、提高精度、图片视频源码调整分辨率和训练相关参数。adapter模型的加载则遵循推理过程中的初始化方法,通过构建不同模块来实现。

       训练过程中,adapter模型的关键结构包括下采样、卷积和ResnetBlock的使用,相比controlnet,T2I-adapter的参数更少,没有注意力层,这使得训练更为高效。模型放入GPU后,使用adamW优化器进行训练,同时设置学习率和数据保存路径。

       状态恢复部分,程序会判断是否从头开始或恢复训练,设置log信息。接下来,代码进入实际的训练循环,包括条件编码、隐藏状态生成、adapter结果附加至sd模型以及adapter梯度计算。

       loss函数定义在模型配置中,采用L2损失来衡量生成图像与给定时间点加噪ground truth的代源码查询接近程度。训练过程中,loss计算和模型保存都在代码中明确体现。

       总的来说,T2I-adapter的训练源码展示了精细的结构和参数设置,确保了AI绘画的可控性和性能。在AI艺术的探索中,每一行代码都承载着技术进步的点滴痕迹。

腾讯T2I-adapter源码分析(1)-运行源码跑训练

       稳定扩散、midjourney等AI绘图技术,为人们带来了令人惊叹的效果,不禁让人感叹技术发展的日新月异。然而,AI绘图的可控性一直不是很好,通过prompt描述词来操控图像很难做到随心所欲。为了使AI绘制的图像更具可控性,Controlnet、T2I-adapter等技术应运而生。本系列文章将从T2I-adapter的源码出发,分析其实现方法。

       本篇是第一篇,主要介绍源码的运行方法,后续两篇将以深度图为例,分别分析推理部分和训练部分的thymeleaf源码分析代码。分析T2I-Adapter,也是为了继续研究我一直在研究的课题:“AI生成同一人物不同动作”,例如:罗培羽:stable-diffusion生成同一人物不同动作的尝试(多姿势图),Controlnet、T2I-adapter给了我一些灵感,后续将进行尝试。

       T2I-Adapter论文地址如下,它与controlnet类似,都是在原模型增加一个旁路,然后对推理结果求和。

       T2I-Adapter和controlnet有两个主要的不同点,从图中可见,其一是在unet的编码阶段增加参数,而controlnet主要是解码阶段;其二是controlnet复制unit的上半部结构,而T2I-Adapter使用不同的模型结构。由于采用较小的模型,因此T2I-Adapter的模型较小,默认下占用M左右,而controlnet模型一般要5G空间。

       首先确保机器上装有3.6版本以上python,然后把代码clone下来。随后安装依赖项,打开requirements.txt,直播球赛源码可以看到依赖项的内容。然后下载示例,下载的会放到examples目录下。接着下载sd模型到model目录下,再下载T2I-Adapter的模型到目录下,模型可以按需到huggingface.co/TencentA...下载。这里我下载了depth和openpose。sd模型除了上述的v1-5,也还下载了sd-v1-4.ckpt。

       根据文档,尝试运行一个由深度图生成的例子,下图的左侧是深度图,提示语是"desk, best quality, extremely detailed",右侧是生成出来的。运行过程比较艰辛,一开始在一台8G显存的服务器上跑,显存不够;重新搭环境在一台G显存的服务器上跑,还是不够;最后用一台G显存的服务器,终于运行起来了。

       接下来尝试跑openpose的例子,下图左侧是骨架图,提示词为"Iron man, high-quality, high-res",右侧是生成的图像。

       既然能跑推理,那么尝试跑训练。为了后续修改代码运行,目标是准备一点点数据把训练代码跑起来,至于训练的效果不是当前关注的。程序中也有训练的脚步,我们以训练深度图条件为例,来运行train_depth.py。

       显然,习惯了,会有一些问题没法直接运行,需要先做两步工作。准备训练数据,分析代码,定位到ldm/data/dataset_depth.py,反推它的数据集结构,然后准备对应数据。先创建文件datasets/laion_depth_meta_v1.txt,用于存放数据文件的地址,由于只是测试,我就只添加两行。然后准备,图中的.png和.png是结果图,.depth.png和.depth.png是深度图,.txt和.txt是对应的文本描述。

       文本描述如下,都只是为了把代码跑起来而做的简单设置。设置环境变量,由于T2I-Adapter使用多卡训练,显然我也没这个环境,因此要让它在单机上跑。而代码中也会获取一些环境变量,因此做简单的设置。

       做好准备工作,可以运行程序了,出于硬件条件限制,只能把batch size设置为1。在A显卡跑了约8小时,完成,按默认的配置,模型保存experiments/train_depth/models/model_ad_.pth。那么,使用训练出来的模型试试效果,能生成如下(此处只是为了跑起来代码,用训练集来测试),验证了可以跑起来。

       运行起来,但这还不够,我们还得看看代码是怎么写法,下一篇见。

       PS:《直观理解AI博弈原理》是笔者写的一篇长文,从五子棋、象棋、围棋的AI演进讲起,从深度遍历、MAX-MIN剪枝再到蒙特卡罗树搜索,一步步介绍AI博弈的原理,而后引出强化学习方法,通俗易懂地介绍AlphaGo围棋、星际争霸强化学习AI、王者荣耀AI的一些强化学习要点,值得推荐。

       AUTOMATIC的webui是近期很流行的stable-diffusion应用,它集合stable-diffusion各项常用功能,还通过扩展的形式支持controlnet、lora等技术,我们也分析了它的源码实现,写了一系列文章。

Python爬虫腾讯视频m3u8格式分析爬取(附源码,高清无水印)

       为了解析并爬取腾讯视频的m3u8格式内容,我们首先需要使用Python开发环境,并通过开发者工具定位到m3u8文件的地址。在开发者工具中搜索m3u8,通常会发现包含多个ts文件的链接,这些ts文件是视频的片段。

       复制这些ts文件的URL,然后在新的浏览器页面打开URL链接,下载ts文件。一旦下载完成,打开文件,会发现它实际上是一个十几秒的视频片段。这意味着,m3u8格式的文件结构为我们提供了直接获取视频片段的途径。

       要成功爬取,我们需要找到m3u8文件的URL来源。一旦确定了URL,由于通常涉及POST请求,我们需要获取并解析对应的表单参数。接下来,我们将开始编写Python代码。

       首先,导入必要的Python库,如requests用于数据请求。接着,编写代码逻辑以请求目标URL并提取所需数据。遍历获取到的数据,将每个ts文件的URL保存或下载。最后,执行完整的爬虫代码,完成视频片段的爬取。

怎么查看腾讯视频网的视频代码

       查看腾讯视频网的视频代码操作步骤如下:

       1、将视频内容用浏览器打开;

       2、在空白处点击右键查看源代码;

       3、内页查找ctrlF或者在浏览器的工具找到选项;

       4、输入v.qq即可查到视频的代码;

       5、如此即可将视频的网址截取。