欢迎来到【postgrepsql 源码编译】【e语言源码入门】【通讯管理系统源码】源码剖析spring-皮皮网网站!!!

皮皮网

【postgrepsql 源码编译】【e语言源码入门】【通讯管理系统源码】源码剖析spring-皮皮网 扫描左侧二维码访问本站手机端

【postgrepsql 源码编译】【e语言源码入门】【通讯管理系统源码】源码剖析spring

2025-01-20 07:08:39 来源:{typename type="name"/} 分类:{typename type="name"/}

1.蚂蚁金服轻量级类隔离框架概述 | SOFAArk 源码解析
2.Spring IoC源码深度剖析
3.一文详解RocketMQ-Spring的源码源码解析与实战
4.剖析slf4j原理并实现自己的日志框架
5.76 张图,剖析 Spring AOP 源码,剖析小白居然也能看懂,源码大神,剖析请收下我的源码膝盖!
6.定时调度- 01 quartz的剖析postgrepsql 源码编译基础你真的了解吗

源码剖析spring

蚂蚁金服轻量级类隔离框架概述 | SOFAArk 源码解析

       SOFAStack,蚂蚁金服自主研发的源码金融级云原生架构组件集,是剖析金融场景的最佳实践。本文由盲僧作者,源码来自OYO,剖析是源码《SOFAArk实现原理》系列的第二篇,系列代号暂未提及,剖析详情可查看系列共建列表。源码该系列关注SOFAArk,剖析一款由蚂蚁金服开源的源码轻量级类隔离框架,主要用于类隔离和应用合并部署。

       SOFAArk的核心产品SOFAArk Biz的打包插件sofa-ark-maven-plugin,是理解Biz包结构的关键。自年起,SOFAArk在蚂蚁金服内部广泛应用,现已被多家企业采用,如网易云音乐、挖财、溢米教育等。本文将介绍插件的使用、打包产物以及与Spring Boot插件的对比,以帮助理解其工作原理。

       SOFAArk的插件使用时,需删除或注释Spring Boot插件,然后引入sofa-ark-maven-plugin。打包后,会产生三个jar包:原生jar、Ark Biz包和Ark执行jar。其中,Ark包和Biz包的结构和Spring Boot的FATJAR有所差异,SOFAArk提供了容器和模块合并部署的能力。

       通过对比Spring Boot的打包产物,SOFAArk的包结构更复杂,因为它包含容器和业务模块。SOFAArk的启动流程涉及Ark容器和插件,这使得它在合并部署上优于Spring Boot。插件原理分析部分,通过调试和流程图揭示了SOFAArk Maven插件的构建逻辑。

       《剖析 | SOFAArk源码》系列致力于深入解析SOFAArk的各个部分,有兴趣的读者可通过公众号“金融级分布式架构”参与共建。SOFAArk的e语言源码入门GitHub地址是:github.com/sofastack/so...

Spring IoC源码深度剖析

       Spring IoC容器初始化深度剖析

       Spring IoC容器是Spring的核心组件,主要负责对象管理和依赖关系管理。容器体系丰富多样,如BeanFactory作为顶层容器,它定义了所有IoC容器的基本原则,而ApplicationContext及其子类如ClassPathXmlApplicationContext和AnnotationConfigApplicationContext则提供了额外功能。Spring IoC容器的初始化流程关键在AbstractApplicationContext的refresh方法中。

       1.1 初始化关键点

       通过创建特定类LagouBean并设置断点,我们发现Bean的创建在未设置延迟加载时,发生在容器初始化过程中。构造函数调用、InitializingBean的afterPropertiesSet方法以及BeanFactoryPostProcessor和BeanPostProcessor的初始化和调用,都在refresh方法的不同步骤中发生。

       1.2 主体流程概览

       Spring IoC容器初始化的主体流程主要集中在AbstractApplicationContext的refresh方法,涉及Bean对象创建、构造函数调用、初始化方法执行和处理器调用等步骤。

       1.3 深度剖析

       分析发现,延迟加载机制使得懒加载的bean在第一次调用getBean时才进行初始化。而对于非懒加载bean,它们在容器初始化阶段已经完成并缓存。Spring处理循环依赖的方法依赖于构造器调用的顺序规则,不支持原型bean的循环依赖,而对单例bean则通过setXxx或@Autowired方法提前暴露对象来避免循环依赖。

一文详解RocketMQ-Spring的源码解析与实战

       火箭MQ与Spring Boot整合详解:源码解析与实战

       本文将带你深入理解在Spring Boot项目中如何运用rocketmq-spring SDK进行消息收发,同时剖析其设计逻辑。此SDK是开源项目Apache RocketMQ的Spring集成,旨在简化在Spring Boot中的消息传递操作。

       首先,我们介绍rocketmq-spring-boot-starter的基本概念。它本质上是一个Spring Boot启动器,以“约定优于配置”的理念提供便捷的集成。通过在pom.xml中引入依赖并配置基本的配置文件,即可快速开始使用。

       配置rocketmq-spring-boot-starter时,需要关注以下两点:引入相关依赖和配置文件设置。生产者和消费者部分,我们将分别详细讲解操作步骤。

       对于生产者,仅需配置名字服务地址和生产者组,然后在需要发送消息的类中注入RocketMQTemplate,最后使用其提供的发送方法,如同步发送消息。模板类RocketMQTemplate封装了RocketMQ的API,简化了开发流程。

       消费者部分,通讯管理系统源码同样在配置文件中配置,然后实现RocketMQListener,以便处理接收到的消息。源码分析显示,RocketMQAutoConfiguration负责启动消费者,其中DefaultRocketMQListenerContainer封装了RocketMQ的消费逻辑,确保支持多种参数类型。

       学习rocketmq-spring的最佳路径包括:首先通过示例代码掌握基本操作;其次理解模块结构和starter设计;接着深入理解自动配置文件和RocketMQ核心API的封装;最后,通过项目实践,扩展自己的知识,尝试自定义简单的Spring Boot启动器。

       通过这篇文章,希望你不仅能掌握rocketmq-spring在Spring Boot中的应用,还能提升对Spring Boot启动器和RocketMQ源码的理解。继续保持学习热情,探索更多技术细节!

剖析slf4j原理并实现自己的日志框架

       本文深入探讨了SLF4J的基本原理,并展示了如何实现自己的日志框架。SLF4J作为日志系统的一个适配层,其主要作用是解决日志系统选择和配置的复杂性。通过引入SLF4J,开发人员只需关注日志的编写逻辑,而无需关心日志系统的具体实现。SLF4J并不提供日志的直接实现,而是提供了一套接口以及获取具体日志对象的方法。SLF4J的实现包括SLF4J-SIMPLE、Logback和Log4j等。Logback和Log4j通过特定的桥接层与SLF4J兼容。

       本文详细分析了Logback的源码结构,展示了它如何基于门面模式实现日志接口,以及Log4j如何通过SLF4J-log4j桥接层与SLF4J进行交互。通过对比SLF4J-API与SLF4J-SIMPLE,本文进一步解释了SLF4J作为适配层的灵活性与重要性。在使用SLF4J时,多个实现可能会导致冲突,通过配置管理或更新依赖关系可以解决这类问题。

       通过实例分析,本文揭示了SLF4J如何帮助开发者在项目中引入不同的日志实现,并确保在更换或维护日志系统时的简便性。SLF4J的实现过程包括定义门面对象、实现自己的LoggerFactory和Logger,最终通过StaticLoggerBinder获取具体的Logger实例。

       实现自己的日志框架时,确保包名遵循SLF4J的查找规则至关重要。本文提出了实现日志框架的易语言礼物源码三大关键组件:定义包名、实现自定义的LoggerFactory和Logger。SLF4J的原理分析指出,其核心在于performInitialization()方法的执行,进而通过StaticLoggerBinder实现具体日志系统的获取。

       对于不改变原有代码而引入自己的日志框架,本文建议通过切面编程实现,确保该类被Spring管理且非null。在SpringBoot2.x中,通常使用cglib进行代理实现。项目已开源,欢迎读者指出错误,地址:gitee.com/z_w/LogSys...

张图,剖析 Spring AOP 源码,小白居然也能看懂,大神,请收下我的膝盖!

       本文将简要介绍AOP(面向切面编程)的基础知识与使用方法,并深入剖析Spring AOP源码。首先,我们需要理解AOP的基本概念。

       1. **基础知识

**

       1.1 **什么是AOP?

**

       AOP全称为Aspect Oriented Programming,即面向切面编程。AOP的思想中,周边功能(如性能统计、日志记录、事务管理等)被定义为切面,核心功能与切面功能独立开发,然后将两者“编织”在一起,这就是AOP的核心。

       AOP能够将与业务无关、却为业务模块共同调用的逻辑封装,减少系统重复代码,降低模块间的耦合度,有利于系统的可扩展性和可维护性。

       1.2 **AOP基础概念

**

       解释较为官方,以下用“方言”解释:AOP包括五种通知分类。

       1.3 **AOP简单示例

**

       创建`Louzai`类,添加`LouzaiAspect`切面,并在`applicationContext.xml`中配置。程序入口处添加`"睡觉"`方法并添加前置和后置通知。接下来,我们将探讨Spring内部如何实现这一过程。

       1.4 **Spring AOP工作流程

**

       为了便于理解后面的源码,我们将整体介绍源码执行流程。整个Spring AOP源码分为三块,macd指标源码解读结合示例进行讲解。

       第一块是前置处理,创建`Louzai`Bean前,遍历所有切面信息并存储在缓存中。第二块是后置处理,创建`Louzai`Bean时,主要处理两件事。第三块是执行切面,通过“责任链+递归”执行切面。

       2. **源码解读

**

       注意:Spring版本为5.2..RELEASE,否则代码可能不同!这里,我们将从原理部分开始,逐步深入源码。

       2.1 **代码入口

**

       从`getBean()`函数开始,进入创建Bean的逻辑。

       2.2 **前置处理

**

       主要任务是遍历切面信息并存储。

       这是重点!请务必注意!获取切面信息流程结束,后续操作都从缓存`advisorsCache`获取。

       2.2.1 **判断是否为切面

**

       执行逻辑为:判断是否包含切面信息。

       2.2.2 **获取切面列表

**

       进入`getAdvice()`,生成切面信息。

       2.3 **后置处理

**

       主要从缓存拿切面,与`Louzai`方法匹配,创建AOP代理对象。

       进入`doCreateBean()`,执行后续逻辑。

       2.3.1 **获取切面

**

       首先,查看如何获取`Louzai`的切面列表。

       进入`buildAspectJAdvisors()`,方法用于存储切面信息至缓存`advisorsCache`。随后回到`findEligibleAdvisors()`,从缓存获取所有切面信息。

       2.3.2 **创建代理对象

**

       有了`Louzai`的切面列表,开始创建AOP代理对象。

       这是重点!请仔细阅读!这里有两种创建AOP代理对象方式,我们选择使用Cglib。

       2.4 **切面执行

**

       通过“责任链+递归”执行切面与方法。

       这部分逻辑非常复杂!接下来是“执行切面”最核心的逻辑,简述设计思路。

       2.4.1 **第一次递归

**

       数组第一个对象执行`invoke()`,参数为`CglibMethodInvocation`。

       执行完毕后,继续执行`CglibMethodInvocation`的`process()`。

       2.4.2 **第二次递归

**

       数组第二个对象执行`invoke()`。

       2.4.3 **第三次递归

**

       数组第三个对象执行`invoke()`。

       执行完毕,退出递归,查看`invokeJoinpoint()`执行逻辑,即执行主方法。回到第三次递归入口,继续执行后续切面。

       切面执行逻辑已演示,直接查看执行方法。

       流程结束时,依次退出递归。

       2.4.4 **设计思路

**

       这部分代码研究了大半天,因为这里不是纯粹的责任链模式。

       纯粹的责任链模式中,对象内部有一个自身的`next`对象,执行当前对象方法后,启动`next`对象执行,直至最后一个`next`对象执行完毕,或中途因条件中断执行,责任链退出。

       这里`CglibMethodInvocation`对象内部无`next`对象,通过`interceptorsAndDynamicMethodMatchers`数组控制执行顺序,依次执行数组中的对象,直至最后一个对象执行完毕,责任链退出。

       这属于责任链,实现方式不同,后续会详细剖析。下面讨论类之间的关系。

       主对象为`CglibMethodInvocation`,继承于`ReflectiveMethodInvocation`,`process()`的核心逻辑在`ReflectiveMethodInvocation`中。

       `ReflectiveMethodInvocation`的`process()`控制整个责任链的执行。

       `ReflectiveMethodInvocation`的`process()`方法中,包含一个长度为3的数组`interceptorsAndDynamicMethodMatchers`,存储了3个对象,分别为`ExposeInvocationInterceptor`、`MethodBeforeAdviceInterceptor`、`AfterReturningAdviceInterceptor`。

       注意!这3个对象都继承了`MethodInterceptor`接口。

       每次`invoke()`调用时,都会执行`CglibMethodInvocation`的`process()`。

       是否有些困惑?别着急,我将再次帮你梳理。

       对象与方法的关系:

       可能有同学疑惑,`invoke()`的参数为`MethodInvocation`,没错!但`CglibMethodInvocation`也继承了`MethodInvocation`,可自行查看。

       执行逻辑:

       设计巧妙之处在于,纯粹的责任链模式中,`next`对象需要保证类型一致。但这里3个对象内部没有`next`成员,不能直接使用责任链模式。怎么办呢?就单独设计了`CglibMethodInvocation.process()`,通过无限递归`process()`实现责任链逻辑。

       这就是我们为什么要研究源码,学习优秀的设计思路!

       3. **总结

**

       本文首先介绍了AOP的基本概念与原理,通过示例展示了AOP的应用。之后深入剖析了Spring AOP源码,分为三部分。

       本文是Spring源码解析的第三篇,感觉是难度较大的一篇。图解代码花费了6个小时,整个过程都沉浸在代码的解析中。

       难度不在于抠图,而是“切面执行”的设计思路,即使流程能走通,将设计思想总结并清晰表达给读者,需要极大的耐心与理解能力。

       今天的源码解析到此结束,有关Spring源码的学习,大家还想了解哪些内容,欢迎留言给楼仔。

定时调度- quartz的基础你真的了解吗

       定时调度- quartz的基础理解

       Quartz,作为Java领域知名的任务调度框架,因其易用和稳定性备受青睐。许多第三方应用,如Spring Boot、Elastic-Job和早期的xxl-job版本,都曾将它作为基础依赖。然而,最新版本的xxl-job已经采用时间轮实现,不再依赖quartz。

       Quartz的核心组件包括Scheduler、JobDetail和Trigger,它们是调度任务的三驾马车。Scheduler作为门面,通过工厂模式提供给开发者,它负责整合和控制所有的调度操作,类似于Quartz的大管家。一个应用通常只有一个Scheduler实例,通过schedulerName区分,每个实例处理对应schedulerName的任务,集群则是通过多个实例共享同一名称来实现。

       JobDetail负责存储任务配置信息,与Trigger(触发器)形成1:N关系,即一个Job可以关联多个Trigger,反之则不然。创建JobDetail时,需要指定任务类和身份ID(group和JobKey)。Trigger则定义任务的触发规则,包括身份ID、起止时间以及与Job的绑定。添加到调度器后,相关信息会被持久化到qrtz_job_details和qrtz_cron_triggers表中。

       触发器的运作关键在于qrtz_triggers表,它记录了任务的运行状态和触发时间。quartz的调度机制大致如下:首先,根据配置计算下次触发时间并更新表;然后,调度器扫描表,将将要触发的任务放入内存队列;在触发前,更新时间并切换状态;执行任务后,重复上述流程。

       虽然本文仅从用户角度浅析了quartz的基本运行机制,但深入理解还需结合源码和更多表结构。下文将通过源码剖析,逐步揭示quartz的内在工作原理。

SpringCloud原理OpenFeign之FeignClient动态代理生成原理

       在SpringCloud框架中,OpenFeign组件提供了基于Java接口的HTTP客户端实现。本文将深入剖析OpenFeign中的FeignClient动态代理生成原理,从@EnableFeignClinets注解的作用、Feign客户端接口动态代理的生成源码剖析以及Feign动态代理构造过程总结三方面进行详细阐述。

       首先,我们来分析@EnableFeignClinets注解的作用。这个注解实际上是整个Feign组件的入口,通过@Import注解导入FeignClientsRegistrar类,该类实现了ImportBeanDefinitionRegistrar接口,当Spring Boot启动时,会调用该类的registerBeanDefinitions方法动态注入bean到Spring容器中。其中,registerFeignClients方法负责扫描带有@FeignClient注解的类,并生成对应的BeanDefinition。

       在Feign客户端接口动态代理的生成源码剖析部分,我们主要关注FeignAutoConfiguration和FeignClientsConfiguration配置类。FeignAutoConfiguration是Feign在整个SpringCloud中的配置类,其中会注入一系列FeignClientSpecification对象,并将其封装到FeignContext中,最后将FeignContext注入到Spring容器中。FeignContext是进行配置隔离的关键组件,它内部维护了每个客户端对应的AnnotationConfigApplicationContext、配置类的封装以及父容器等信息。通过这种方法,每个客户端的配置能够在独立的ApplicationContext中进行解析,实现了配置的隔离。

       接着,我们深入解析NamedContextFactory的作用,它用于进行配置隔离,确保Ribbon和Feign的配置能够被独立管理。通过构建独立的ApplicationContext,每个客户端的配置能够在自己的上下文中进行解析,避免了配置冲突。此外,我们还会剖析FeignClientsConfiguration,这是一个默认配置类,其中包含了生成Feign客户端动态代理所需的各种bean,如解析SpringMVC注解的能力、构建动态代理的类等。

       在构建动态代理的过程中,整个流程涉及多个关键步骤:扫描并生成BeanDefinition、注入FeignClientFactoryBean、获取代理对象等。具体而言,当@EnableFeignClinets注解生效时,会扫描所有带有@FeignClient注解的接口并生成对应的BeanDefinition。随后,通过FeignClientFactoryBean重新生成一个bean定义,注册到Spring容器中。当需要获取代理对象时,通过FeignClientFactoryBean的getObject方法调用getTarget(),进一步获取到代理对象。整个过程涉及Feign.Builder的配置、组件的获取以及最终通过Feign.Builder构建动态代理对象。

       综上所述,OpenFeign在SpringCloud框架中的实现,通过一系列的注解、配置类以及组件的协作,实现了基于Java接口的HTTP客户端的动态代理生成。从@EnableFeignClinets的注解作用到Feign客户端接口的动态代理生成,再到Feign动态代理的构造过程,整个流程设计精巧,有效提高了服务间的互操作性和可维护性。对于希望深入理解OpenFeign原理的开发者而言,本文提供的分析和总结将有助于更好地掌握这一技术。

       最后,尽管本文已经详细阐述了OpenFeign的动态代理生成原理,但对于Feign与Ribbon的整合以及其他SpringCloud组件的原理,未来将会有更多深入分析的文章。通过本文的总结,希望能为读者提供一个清晰的视角,以便在实际项目中灵活运用OpenFeign实现高效、稳定的远程调用。

从源码剖析SpringBoot中Tomcat的默认最大连接数

       虽然前端的Chrome浏览器对WebSocket连接有限制,但实际情况下这个限制并不常见。SpringBoot中Tomcat的默认最大连接数和线程数配置对请求处理能力有很大影响。在SpringBoot 1.5.9.RELEASE版本中,未配置时,Tomcat默认的最大连接数为,而最大线程数为。然而,随着版本更新,这些默认值在新版本(如2.2.3.BUILD-SNAPSHOT)中可能有所调整,具体配置需查看最新文档或源码。

       在源码层面,可以通过ServerProperties类找到配置映射,然后在Tomcat类的customizeTomcat方法中,发现配置文件中的max-connections值会被赋值给endpoint的maxConnections属性,其默认值为。同样,maxThreads的默认值也在AbstractEndpoint类中设置,为。这些默认值在SpringBoot的最新版本中可能会有所变化,因此开发者在实际项目中需要根据需求进行调整。