1.【unimrcpclient源码分析】mrcp components
2.海康大华等摄像头RTSP低延迟(小于500毫秒)网页播放完全解决方案!过程
3.解决FFmpeg播放RTSP推送的源码H265码流报错问题
4.浏览器监视RTSP摄像头
5.ZLMediaKit 服务器源码解读---RTSP推流拉流
6.RTSP流媒体服务器的搭建与测试《带源码》
【unimrcpclient源码分析】mrcp components
配置样例包含六个部分。
函数unimrcp_client_components_load主要负责这六个组件的流程加载,下面详细解析各个组件的过程加载过程。
加载resource组件时,源码其结构体mrcp_resource_t定义在mrcp_resource.h,流程手表 app开发 源码字符串使用apt_str_table_item_t(定义在mrcp_resource_loader.c),过程mrcp_resource_loader_t和mrcp_resource_factory_t分别位于mrcp_resource_loader.c和mrcp_resource_factory.c。源码构造mrcp_resource_loader内部是流程mrcp_resource_factory_t *factory,factory通过mrcp_resource_factory_create构建,过程参数为MRCP_RESOURCE_TYPE_COUNT的源码第5个值,整型值为4。流程
加载sip-uac组件时,过程mrcp_sofia_client_config_t结构体(mrcp_sofiasip_client_agent.c)应用于sofia sip协议栈。源码默认端口和名称设定如下:config->local_port = DEFAULT_SIP_PORT; 默认端口为,流程config->user_agent_name = DEFAULT_SOFIASIP_UA_NAME; 默认agent name为UniMRCP SofiaSIP,config->origin = DEFAULT_SDP_ORIGIN; 默认sdp origin为UniMRCPClient。IP地址配置通过unimrcp_client_ip_address_get(unimrcp_client.c)实现,可配置为“auto”或“iface”。然后使用mrcp_sofiasip_client_agent_create(mrcp_sofiasip_client_agent.c)创建sofiasip_client。
加载rtsp-uac组件时,指代MRCPv1版本的uac组件。rtsp_client_config_t结构体(mrcp_unirtsp_client_agent.h)用于配置。组件加载通过unimrcp_client_rtsp_uac_load函数完成。
加载media-engine组件时,配置项仅包含realtime_rate。unimrcp_client_media_engine_load函数负责加载此组件。mpf_engine_t结构体(mpf_engine.c)用于创建mpf_engine,使用mpf_engine_create函数。
加载rtp-factory组件时,mpf_rtp_config_t结构体(mpf_rtp_descriptor.h)包含可配置项。unimrcp_client_rtp_factory_load函数用于加载此组件,并通过mpf_rtp_termination_factory_create(mpf_rtp_termination_factory.c)创建相应的工厂。
海康大华等摄像头RTSP低延迟(小于毫秒)网页播放完全解决方案!
在浏览器中实现播放RTSP实时视频流,需要考虑多种方案以实现低延迟、低成本的多路稳定播放。首先,浏览器插件方案在IE及Chrome 以下版本的补码与源码怎么转换浏览器中是主流选择,使用ActiveX播放控件或NPAPI播放插件,可直接调用本地原生程序播放,充分利用硬件解码和硬件加速渲染,实现良好效果。VLC作为开源跨平台多媒体播放器,支持IE、Chrome及Firefox低版本浏览器插件,移动端兼容性也非常好。然而,此方案需要额外安装VLC客户端软件,并对某些场景不适用。
其次,先转码再转流方案需要架设视频流转码服务器,利用ffmpeg转码串流成RTMP,然后前端使用VideoJS播放Adobe Flash Player。然而,基于Chromium内核的浏览器自年起全面取消了对Flash Player的支持,VideoJS因此失效。当前方案使用flv.js实现,要求服务端先把RTSP视频流转换为flv,然后通过Web Socket或WebRTC推送到前端,前端再转换为Video所支持的MP4播放。这种方案导致RTSP视频流需要经过两次转码,画面延迟时间大幅增加,且长期使用服务器端转码和转流对CPU、内存、网络带宽压力大,成本高,播放高分辨率视频流时经常出现花屏、卡顿现象。此方案要求浏览器支持流媒体扩展特性(MSE),无法利用本机硬件加速实现解码和渲染播放,适用于移动端网页播放。
第三,先转流再转码方案通过Streamedian公司的免插件播放器Html5 RTSP Player实现。此方案需要架设Web Socket视频流转发服务器,前端连接到服务器后,服务端不断转发RTSP视频流给前端JS处理库,易语言ie修复源码后端库再转换为Video所支持的MP4播放。此方案不支持IE浏览器,画面延迟高达数秒,首屏显示慢,无法利用本机硬件加速,CPU占用高,播放时存在花屏、卡顿现象,体验差。此方案要求浏览器支持流媒体扩展特性(MSE),适用于单源播放,多路播放时服务器压力大,且兼容性较差,不适合作为商业用途。
扩展程序方案,如基于Chrome浏览器的PPAPI插件技术的VXG RTSP Player,不适用于IE、Firefox等浏览器,且谷歌已宣布将在年6月终止对NaCl、PNaCl和PPAPI API的支持,无讨论价值。双内核方案,如采用Chrome扩展程序IETab实现,存在大规模自主可控部署难问题,IE内核环境下播放控件控制困难,IE兼容性差,用户体验差,维护升级麻烦。
最后,Wasm方案采用Chrome等高版本浏览器支持的Wasm标准技术,实现RTSP视频流通过ffmpeg的Wasm版软解码为Video支持的MP4播放。Wasm不支持硬件解码,多路播放时终端电脑的CPU和内存占用高,性能差。此方案适用于需要支持H编码的场景,要求浏览器支持流媒体扩展特性(MSE),实际应用案例较少。
升级方案集中在实现不转码并充分利用终端电脑硬件加速特性的javaweb系统公告管理源码外接系统。这种系统需要在浏览器网页中实现一个内嵌到网页中的播放窗口,前端可控制播放窗口,并随浏览器窗口操作联动。播放窗口为本地原生程序,采用高性能C++语言开发,利用硬件加速,前端通过Web Socket连接播放窗口并发送JSON命令控制播放。市场上已有类似实现的软件,如猿大师中间件,提供全兼容性,包括低版本Chrome和IE浏览器,提供了类似ActiveX控件的安全机制。某视频监控大厂发布的版本采用QT框架,联动效果差,程序包大,未提供前端自动升级和安全调用机制。免插件方案中,外接程序的安全性可通过验证并开放源代码打消顾虑,部署和升级压力小,整体效果优于IE中的ActiveX控件。
综上所述,本文提供了一个稳定可靠、兼容性好、低延迟且可同时稳定播放多路RTSP的低成本半开源技术方案,特别适用于高分辨率RTSP播放。选择技术实施方案时,需考虑满足客户刚性需求、降低总成本、保证兼容性和稳定性,并确保技术方案不会因浏览器升级而失效。此方案适用于机场、地铁站、交管局等场景,实现低延迟、低成本的多路稳定播放。
解决FFmpeg播放RTSP推送的H码流报错问题
RTSP,实时流传输协议,常用于传输视频流。cf修复工具源码许多流媒体平台,如B站的ijkplayer,都是基于FFmpeg的FFplay内核。我曾分享过关于使用RTSP推送H码流的文章,包括本地拉流和编码时的推流显示。然而,当尝试使用FFplay处理RTSP推送的H码流时,遇到了报错"illegaltemporal ID in RTP/HEVC packet"。
这个错误提示指向了H的NALU Header中的temporal ID问题。FFmpeg的源码检查了这个值,如果为0,会报错。H标准规定temporal ID不能为0,因此这个检查是合理的。问题可能出在RTP封装过程,而非原始码流,因为本地H码流的NALU Header值并不是0。
为了解决这个问题,我深入研究了RTP封装H裸流的原理,发现在HSource.cpp的HandleFrame函数中,处理NALU数据时忽略了起始码。修正这一逻辑后,成功用FFplay播放了RTSP推送的H视频,尽管与VLC的播放效果相比稍有卡顿。FFplay播放的命令行参数包括指定窗口名称和分辨率。
总结来说,通过问题定位和源码解析,我解决了FFplay在处理RTSP H码流时的报错,实现了本地H视频的正确播放。这个过程对理解FFmpeg工作原理和RTSP封装有帮助。
浏览器监视RTSP摄像头
随着时代的发展,安防系统通过通用浏览器观看监控画面成为常态。然而,RTSP协议的摄像头需要WebRTC协议接收视频流,导致传输协议不兼容问题。既然底层传输协议无法直接互通,有无其他解决办法?答案是肯定的,通过服务器中转实现RTSP与WebRTC的互通。架构包括RTSP服务端接收RTSP协议摄像头流,服务器内部转码后,再使用WebRTC协议传输至WebRTC客户端,实现两者间的无缝连接。此方案能简化架构,提高效率,尤其当两个不同终端连接同一服务器时。
RTSP协议作为历史悠久的实时流传输协议,分为信令和传输两部分。信令用于建立数据通道,传输则用于发送音视频数据。RTSP信令主要包括OPTIONS、DESCRIBE、SETUP、TEARDOWN、PLAY、PAUSE、ANNOUNCE、RECORD和GET_PARAMETER等。了解这些信令的使用,有助于推流和拉流过程的实现。
RTSP推流过程:RTSP客户端首先向服务端发送OPTIONS信令查询支持的信令,服务端返回所支持的信令列表,客户端再发送ANNOUNCE信令并附上SDP文件,服务端解析后返回确认响应,随后客户端发送SETUP信令设置推流通道,完成推流。
RTSP拉流过程:客户端同样先发送OPTIONS信令获取服务端支持的信令,随后发送DESCRIBE信令获取可拉取的音视频流信息,解析SDP文件后,客户端发送SETUP信令并开始从服务器拉取音视频流。
SDP协议用于描述会话信息,包括会话层和媒体层。会话层包含版本、名称、会话时间等信息,媒体层描述会话包含哪些媒体,如音频和视频,其中可包含多个媒体描述。通过SDP文件,客户端能获取到详细的媒体信息,以便进行推流或拉流操作。
搭建RTSP环境时,可以使用开源的RTSP服务器,如EasyDarwin、ZLMediaKit等。以ZLMediaKit为例,搭建过程包括配置服务器、启动服务,然后使用ffmpeg进行音视频流的推流。当ZLMediaKit运行后,使用ffplay拉取RTSP流进行观看。
ZLMediaKit支持WebRTC协议,通过服务器中转,能够将RTSP协议的音视频流转换为WebRTC兼容格式,实现WebRTC客户端观看RTSP摄像头流。尽管具体实现细节未详尽说明,但通过解析SDP文件,服务器能将RTSP流按照WebRTC协议要求重新打包,转发给WebRTC客户端。
本文重点介绍了RTSP协议的推流和拉流流程,以及如何通过服务器中转实现RTSP与WebRTC的互通。对于希望在浏览器中监控RTSP摄像头的企业,已有成熟的解决方案。了解RTSP协议的细节和使用场景,可以帮助快速实现相关功能。对于SDP解析、信令交互等细节感兴趣的读者,可通过阅读EasyDarwin或ZLMediaKit的源代码,进一步深入了解实现过程。
ZLMediaKit 服务器源码解读---RTSP推流拉流
RTSP推流与拉流在ZLMediaKit服务器源码中有着清晰的解析过程和处理逻辑。数据解析通过回调到达RtspSession类的onRecv函数,进而进行分包处理,头部数据与内容分离。根据头部信息判断数据包类型,rtp包与rtsp包分别由onRtpPacket和onWholeRtspPacket函数处理。
RTSP处理过程中,解析出的交互命令被分发至不同的处理函数。对于rtp包处理,数据封装成rtp包后,执行onBeforeRtpSorted函数进行排序,排序后的数据放入缓存map,最终回调到RtspSession的onRtpSorted函数。这里,回调数据进入RtspMediaSourceImp成员变量,该变量指向RtspDemuxer解复用器,用于H等视频格式的解复用。
在H解复用器中,rtp包经过一系列处理后,由HRtpDecoder类的decodeRtp函数转化为H帧数据,最终通过RtpCodec::inputFrame函数分发至代理类。代理类在处理H帧数据时,分包并添加必要参数(如pps、sps信息),然后通过map对象将数据传递给多个接收者。
处理完H帧后,数据将流转至编码阶段。在RtspMediaSourceImp中,H帧数据被传递至MultiMediaSourceMuxer编码类。在编码过程中,数据通过RtspMuxer的inputFrame接口进入编码器HRtpEncoder,最后被打包成rtp包,准备分发。
总结而言,RTSP推流过程主要包含数据解析、视频解复用与编码三个关键步骤。在拉流阶段,通过鉴权成功后获取推流媒体源,利用play reader从缓存中取出rtp包并发送给客户端。
RTSP流媒体服务器的搭建与测试《带源码》
搭建与测试RTSP流媒体服务器,通过C++实现,支持Linux和Windows编译环境,使用VLC客户端进行测试,功能包括RTSP的多种操作、SDP生成、RTP打包和TS文件解析,附带源码分析文档。 新增功能包括: 别名功能:通过替换真实的文件名和路径,以更友好、更短的URL发布资源,增强用户体验。 内容缓存:在多台服务器间传输多媒体文件,提升客户播放内容品质,节约传输成本,优化内容交付路径。 定制日志:灵活定义信息捕捉规则与时间,支持默认模板或自定义模板,便于系统报告生成。 SLTA功能:模拟直播传输代理,支持多种流媒体格式,提供更强大的发布方式,实现流媒体直播体验。 RTSP缓存指示:控制哪些内容应被缓存在Helix Universal Server,提供更大缓存灵活性。 冗余服务:为内容发布提供等级选择,确保在RealOne Player断开后,可切换至另一服务器连接,保证播放连续性。 Windows Media流媒体支持:通过MMS协议或HTTP协议向Windows Media Player传输流媒体,支持与Windows Media Encoder的连接,实现多格式流媒体发布。 MPEG流媒体支持:发布MPEG-1、MPEG-2、MP3及MPEG-4格式内容,确保多种音频与视频格式的兼容性。 智能流:在保证带宽的前提下,使用智能流优化Real音频或Real视频广播,确保客户端接收合适的码率。 RealOne Player统计:增强客户统计状态,返回更详细信息,利用TurboPlay功能优化播放体验。 搭建网络直播电视,支持多种流媒体格式,如音频文件(RealAudio、Wav、Au、MPEG等)、视频文件(RealVideo、AVI、QuickTime等)及其他类型内容,通过Helix Producer将不支持的文件转换为可支持的格式。 提供多种服务模式,包括点播、直播与模拟直播,满足不同场景需求。Linux环境下安装配置,包括域名或IP地址绑定、加载点配置、服务器连接控制、访问控制与服务器监控,确保系统稳定运行。 RTSP流媒体服务器通过避免视频文件被浏览器通过HTTP下载,优化了内容传输效率。建议在中小型视频点播服务中使用RAID 5,以提升数据安全性和读取速度,同时控制成本。提供丰富文档、问题解答、学习资源、资料视频与源码分享,支持C/C++、Linux、Nginx、golang等技术栈学习与实践。