【符号整数的源码】【c 数据字典 源码】【yii2源码分析】小数的机器源码有多少个

时间:2024-11-24 22:43:21 来源:connect 指标源码 编辑:spark源码调试环境

1.计算机中的小数原代码、补码、机多少逆码怎么表示?
2.小数的器源原码是多少
3.原码,反码,补码,移码

小数的机器源码有多少个

计算机中的原代码、补码、小数逆码怎么表示?

       一、机多少小数部分的器源符号整数的源码原码和补码可以表示为两个复数的分子和分母,然后计算二进制小数系统,小数根据下面三步的机多少方法就会找出小数源代码和补码的百位形式。

       /=B/2^6=0.B

       -/=B/2^7=0.B

       二、器源将十进制十进制原始码和补码转换成二进制十进制,小数然后根据下面三步的机多少方法求出十进制源代码和补码形式。一个

       0.=0.B

       0.=0.B

       三、器源二进制十进制对应的小数原码和补码

       [/]源代码=[0.B]源代码=B

       [-/]源代码=[0.b]源代码=B

       [0.]原码=[0.b]原码=B

       [0.]源代码=[0.B]源代码=B

       [/]补体=[0.B]补体=B

       [-/]补体=[0.b]补体=B

       [0.]补码=[0.b]补码=B

       [0.]补体=[0.B]补体=B

扩展资料:

       原码、逆码、机多少c 数据字典 源码补码的器源使用:

       在计算机中对数字编码有三种方法,对于正数,这三种方法返回的结果是相同的。

       +1=[原码]=[逆码]=[补码]

       对于这个负数:

       对计算机来说,加、减、乘、除是最基本的运算。有必要使设计尽可能简单。如果计算机能够区分符号位,那么计算机的基本电路设计就会变得更加复杂。

       负的正数等于正的负数,2-1等于2+(-1)所以这个机器只做加法,yii2源码分析不做减法。符号位参与运算,只保留加法运算。

       (1)原始代码操作:

       十进制操作:1-1=0。

       1-1=1+(-1)=[源代码]+[源代码]=[源代码]=-2。

       如果用原代码来表示,让符号位也参与计算,对于减法,结果显然是不正确的,所以计算机不使用原代码来表示一个数字。

       (2)逆码运算:

       为了解决原码相减的问题,引入了逆码。

       十进制操作:1-1=0。精准波段买卖指标源码

       1-1=1+(-1)=[源代码]+[源代码]=[源代码]+[源代码]=[源代码]=[源代码]=-0。

       使用反减法,结果的真值部分是正确的,但在特定的值“0”。虽然+0和-0在某种意义上是相同的,但是0加上符号是没有意义的,[源代码]和[源代码]都代表0。

       (3)补充操作:

       补语的出现解决了零和两个码的符号问题。

       十进制运算:1-1=0。

       1-1=1+(-1)=[原码]+[原码]=[补码]+[补码]=[补码]=[原码]=0。

       这样,0表示为[],而之前的招投标管理系统源码-0问题不存在,可以表示为[]-。

       (-1)+(-)=[源代码]+[源代码]=[补充]+[补充]=[补充]=-。

       -1-的结果应该是-。在补码操作的结果中,[补码]是-,但是请注意,由于-0的补码实际上是用来表示-的,所以-没有原码和逆码。(-的补码表[补码]计算出的[原码]是不正确的)。

小数的原码是多少

       1.和本就是原码。

       8位字长纯小数,第一位为符号位,小数点在第一位后面,后七位为具体数值,如: -0.原码表示为1.,反码为1.,补码为1.;-1的补码为1.。

       若数据x的形式为x=x0.x1x2…xn(其中x0为符号位,x1~xn是数值的有效部分,也称为尾数,x1为最高有效位),则在计算机中的表示形式为:

       一般说来,如果最末位xn= 1,前面各位都为0,则数的绝对值最小,即|x|min= 2^(-n)。如果各位均为1,则数的绝对值最大,即|x|max=1-2^(-n)。所以定点小数的表示范围是:2^(-n)≤|x|≤1 -2^(-n)。

扩展资料:

       由于“编码总位数为8”的限制,真值-无法用原码、反码来表示,似乎不能用上述规则来求解补码,但实际上是可行的——只要不管它的最高位即可,操作办法如下:

       将化为二进制为:1 ,最高位为1,可以只对舍去最高位后剩余的7位进行处理即可,首先取反得:,加1得:1 ,最高位有进位需丢弃,即得:,加上符号位就得补码:1 。

       又如,当编码总位数为4时,真值X=+0.的原码、反码、补码均为:0 。真值X=-0.的原码、反码、补码依次为:1 、1 、1 。同理,特例,-1的补码为:1 。在定点小数中,小数点隐含在第一位编码和第二位编码之间。

       按此规则,任何一个小数都可以被写成 :N = NS . N-1 N-2 … N-M。如果在计算机中用m+1个二进制位表示上述小数,则可以用最高(最左)一个二进制位表示符号(如用0表示正号,则1就表示负号),而用后面的m个二进制位表示该小数的数值。

       小数点不用明确表示出来,因为它总是固定在符号位与最高数值位之间,已成定论。定点小数的取值范围很小,对用m+1个二进制位的小数来说,其值的范围为:

       |N| ≤ 1-2^(-m)即小于1的纯小数,这对用户算题是十分不方便的,因为在算题前,必须把要用的数,通过合适的 "比例因子"化成绝对值小于1的小数,并保证运算的中间和最终结果的绝对值也都小于1,在输出真正结果时,还要把计算的结果按相应比例加以扩大。

原码,反码,补码,移码

        写在前面:该文章为本人学习中写的一些笔记和心得,发表出来主要是为了记录自己的学习过程。本人才疏学浅,笔记难免存在不足甚至纰漏,但会不定期更新。

        基本知识:假设有一个n位的二进制数

        则这个二进制数共有 种状态,这个数最大为

        反过来 ,写成二进制为 ,一共有8位,1后面7个小数

        以下举例均为n位数,实例为8位数

        原码

        简单直接的二进制,以下以定点数为例。

        定点纯小数: 0 首位为符号位,0为正1为负,这里表示0.1()

        定点纯整数: 0 这里表示1()

        因为有符号位,所以有正负零之分 0 和 1

        数据范围:-~(后面7位全为1)//公式表达为

        特点:原码不适合加减,但适合乘除

        反码

        正数的反码与其原码相同;负数的反码是对其符号位后的原码逐位取反,符号位不变(为1)

        反码能表达的数据范围:与源码一样

        补码

        目的:方便计算机进行加减

        特点:在机器中适合加减的数字表示方式

        补码能实现计算机"加上负数"的本质原理是模运算,也就是A减去B等于A加上B相对于A的补数再求模。就好像时钟顺时针拨动3h和逆时针拨动9h得到的结果一样。

        二进制求补码:

        补数=(原数+模)(mod 模),很明显,若原码是正,则补码是它本身,对于正数完全不用考虑求补码。

        对于计算机,因为两个相加的数的位数相同(n),且和不能超过n+1位,因此应该取的模是...(n个0)。

        因此对于n位纯小数,它的模(十进制)为2 ,对于n位纯整数,它的模为2 n

        模 : (1 0 )

        原码: ( 0 )

        注意到,尽管符号位没有任何数值信息,这里取模依然把符号位考虑进去了,原因是我们可以通过定义补码,来使第一个符号位参与计算机计算,从而得到想要的结果。

        (同时,把符号位算进去可以让我们在用数学公式法求二进制补数时,直接从结果得到补码

        例: x= -0.

        [x]è¡¥=+x=.-0.=1.

        原来是要取模得补数为0.(2),但正好首位的1可以表示原数的负号,因此可直接读出补码为1

        )

        因此对于补码,符号位既起指示正负号的作用,又参与运算。

        另外,区别于原码有两个0(正负0),在补码的规定中,只有一个0(...的正0,因为原码也全是0),而1 ...可以表示-1(补码纯小数)或-2 n-1 (补码纯整数)

        //可以这么记(以纯整数为例):因为后面n-1个0取反后为n-1个1,加1后为2 n-1 (),前面一个1表示负数,因此补码能表示-2 n-1

        补码怎么来:原码为正,补码与原码相同;原码为负,后面的位数为原码取反加1

        移码

        目的:为了方便计算机比大小,消除符号位对计算机的干扰

        原理是把负数部分全部移到非负数方向,也就是说要把第一位符号位的意义给消除掉。消除方法为:对于补码的正数,符号位由0变为1,增大;对于补码的负数,符号位概念消除,在计算机中被定义为正数,又为了确保原负数小于原正数,符号位由1变为0。

        为了保证每个数之间大小关系不变,要用补码来转换成移码,用原码来转换的话,负数之间的大小关系会反转。

        数学公式:

        宏观上来看是把居中的整个数轴平移到了非负半轴上,每个数之间的大小关系不变。

        纯小数[X] 移 =1+X

        纯整数 [X] 移 = (一般标准)

        移码怎么来:移码和补码尾数相同,符号位相反(也就是补码 首位的1->0 ;0->1)

        因为移码从补码那里来,所以也能额外多表示一个数

copyright © 2016 powered by 皮皮网   sitemap