1.ffmpeg 利用AVIOContext自定义IO 输出结果写buffer
ffmpeg 利用AVIOContext自定义IO 输出结果写buffer
在工程开发中,利用ffmpeg进行音频转码的需求普遍存在。本文介绍如何利用ffmpeg c api实现音频数据直接存入缓存中,供下一个模块使用,以避免文件落地。通过在ffmpeg示例文件transcoding.c的怎样阅读android源码基础上增加输出结果写入buffer的功能,我们解决了音频数据输出时长和文件大小的问题。以下是对此流程及问题解决的详细说明。
在ffmpeg处理音视频的完整流程中,音频文件经分离器分离出音频流后,通过解码器解码为原始的音频帧。这些帧可进一步经过过滤操作如声道切分或降频,然后编码为新的c 源码执行步骤packet。封装器将这些packet打包输出到文件中。通过理解ffmpeg的架构和流程,我们可以更直观地理解如何在不落盘的情况下,直接将转码后的音频数据写入buffer。
在具体的编码流程中,我们可以看到一个典型的Tomcat源码maven配置例子:将封装了aac编码音频流和h编码视频流的mp4文件进行解码。ffmpeg的AVFormatContext类用于读取文件,并分离出音频流和视频流,然后将数据块AVPacket解码为无压缩的AVFrame。
转码过程涉及将一种编码转换为另一种编码,以满足不同需求。在我们的买源码被骗5000应用场景中,我们实现了从h到h的转码,确保音频数据在不落盘的情况下被有效处理。
对于转封装格式,即从一种容器格式转换为另一种容器格式,如从mp4转换为flv,转换过程中无编解码过程,足球推荐app源码仅进行容器格式的拷贝。
在编译ffmpeg源代码时,我们可能会遇到各种问题,如本地运行时的注意事项和设置,以及如何在main()函数中打印ffmpeg的日志。在对transcoding.c进行修改以实现音频数据输出到buffer的过程中,我们发现了两个主要问题:音频数据输出时长和文件大小的偏差。
经过问题排查,我们发现使用ffmpeg custom IO接口自定义输出形式时,需要同时提供write()和seek()两个函数。这两个函数对于正确计算并更新音频数据的有效时长至关重要。同时,我们发现输出到buffer中的音频数据未被限定有效长度,导致文件末尾出现大量无效数据。解决这些问题后,我们的代码能够按预期工作。
在实际应用中,代码的修改和问题解决遵循了ffmpeg api的正确使用规则,确保了音频数据在转码过程中的准确性和效率。经过修复后的代码实现了音频数据不落盘的高效处理,满足了特定场景的需求。
在最后,附上完整的代码片段,供参考和使用。