1.Python OpenCV 过点击式和滑动式形验证码的图片校验
Python OpenCV 过点击式和滑动式形验证码的校验
在近期进行App抓包的过程中,我发现该App在特定时间会弹出验证码。验证源码完成验证后,图片系统会提供token,验证源码此token是图片发起正常请求所必需的。
文章源码地址:github.com/ThinkerWen/C...
以下是验证源码彩虹秒赞源码购买验证码的截图:
弹出验证码的Response如下:
完成验证码的Request如下:
通过观察,我发现只需将验证码的图片点击坐标发送至完成验证码的接口,即可获取到token。验证源码因此,图片现在的验证源码目标是提取坐标。
观察发现,图片这个验证码相对简单,验证源码因为它没有图案扭曲,图片所以通过率较高。验证源码同时,图片朔源码鱼胶加盟代理我也回忆起之前解决滑动验证码的方法(一并展示)。
要通过验证码,首先需要将目标图案在背景上定位,找到其像素点。为此,我使用了Python的OpenCV库进行识别。
1.提取:首先,mmo手游框架源码我发现目标都是黑色图案,背景为透明。当我使用cv2.imread(front_image)加载时,显示一片漆黑。即使后来我使用了保留透明通道的加载方式,结果依旧。
为了解决这个问题,tdx量柱指标源码我决定剥离透明通道,将目标图案透明色设置为白色,这样目标图案就自然显现了。
2.找到目标图的位置:接着,我将目标的三个图案分割出来,分别找出它们的像素位置。由于图案排列位置固定,宝塔面板如何改源码我直接记录坐标进行像素分割。
分割后,我将目标图和背景图都转化为灰度,以防止颜色干扰。
然后进行最佳匹配。然而,匹配结果并不理想,无法准确找到所有三个目标图案,因此需要进一步优化。
3.优化匹配方案:继续观察后,我发现背景中的目标图案总是白色的,因此我决定保留背景上的白色部分,其余部分转为黑色。
为了尽可能保留完整的图案,我经过多次尝试,发现-区间的RGB颜色可以保留大部分目标图案的白色。
同时,我将黑色的目标图案反转为白色。
由于需要获取的是点击坐标,我将左上角坐标(x1,y1)进行+的偏移,以移动到图案本身上面。
经过验证,现在的识别方法可以正常通过点击验证码。
滑动验证码的解决方案与点击验证码类似,甚至现在常见的一种滑动验证码已经有了通用的代码。
看雪ID:暮至夜寒
看雪-安全社区|安全招聘|kanxue.com
本文为看雪论坛精华文章,由暮至夜寒原创,转载请注明来自看雪社区
阅读原文: