【泡泡代码源码】【app菜单源码】【vr公式源码】spark部署源码剖析_spark 源码分析

时间:2024-11-15 06:06:45 分类:tcpdump源码详解 来源:flinkgraph源码

1.如何学习Spark API
2.深度解析Delta Lake
3.SQL Server 2019 CU5带来了哪些新功能和改进?
4.Spark-Submit 源码剖析

spark部署源码剖析_spark 源码分析

如何学习Spark API

       Spark采用一个统一的技术堆栈解决了云计算大数据的如流处理、图技术、机器学习、NoSQL查询等方面的所有核心问题,具有完善的生态系统,这直接奠定了其一统云计算大数据领域的霸主地位;

       è¦æƒ³æˆä¸ºSpark高手,需要经历一下阶段:

       ç¬¬ä¸€é˜¶æ®µï¼šç†Ÿç»ƒåœ°æŽŒæ¡Scala语言

       1, Spark框架是采用Scala语言编写的,精致而优雅。要想成为Spark高手,你就必须阅读Spark的源代码,就必须掌握Scala,署源;

       2, 虽然说现在的Spark可以采用多语言Java、Python等进行应用程序开发,但是最快速的和支持最好的开发API依然并将永远是Scala方式的API,所以你必须掌握Scala来编写复杂的和高性能的Spark分布式程序;

       3, 尤其要熟练掌握Scala的trait、apply、函数式编程、泛型、逆变与协变等;

       ç¬¬äºŒé˜¶æ®µï¼šç²¾é€šSpark平台本身提供给开发者API

       1, 掌握Spark中面向RDD的开发模式,掌握各种transformation和action函数的使用;

       2, 掌握Spark中的宽依赖和窄依赖以及lineage机制;

       3, 掌握RDD的计算流程,例如Stage的划分、Spark应用程序提交给集群的基本过程和Worker节点基础的工作原理等

       ç¬¬ä¸‰é˜¶æ®µï¼šæ·±å…¥Spark内核

       æ­¤é˜¶æ®µä¸»è¦æ˜¯é€šè¿‡Spark框架的源码研读来深入Spark内核部分:

       1, 通过源码掌握Spark的任务提交过程;

       2, 通过源码掌握Spark集群的任务调度;

       3, 尤其要精通DAGScheduler、TaskScheduler和Worker节点内部的工作的每一步的细节;

       ç¬¬å››é˜¶çº§:掌握基于Spark上的核心框架的使用

       Spark作为云计算大数据时代的集大成者,在实时流处理、图技术、机器学习、NoSQL查询等方面具有显著的优势,我们使用Spark的时候大部分时间都是在使用其上的框架例如Shark、Spark Streaming等:

       1, Spark Streaming是非常出色的实时流处理框架,要掌握其DStream、transformation和checkpoint等;

       2, Spark的离线统计分析功能,Spark 1.0.0版本在Shark的基础上推出了Spark SQL,离线统计分析的功能的效率有显著的提升,需要重点掌握;

       3, 对于Spark的机器学习和GraphX等要掌握其原理和用法;

       ç¬¬äº”阶级:做商业级别的Spark项目

       é€šè¿‡ä¸€ä¸ªå®Œæ•´çš„具有代表性的Spark项目来贯穿Spark的方方面面,包括项目的架构设计、用到的技术的剖析、开发实现、运维等,完整掌握其中的每一个阶段和细节,这样就可以让您以后可以从容面对绝大多数Spark项目。

       ç¬¬å…­é˜¶çº§ï¼šæä¾›Spark解决方案

       1, 彻底掌握Spark框架源码的每一个细节;

深度解析Delta Lake

       在设计分析型数据库时,对存储的码剖需求主要侧重于吞吐量,而非IOPS或延迟。源码数据通常以压缩的分析形式存储,倾向于采用out-of-place update策略,署源这意味着OSS,码剖泡泡代码源码以其大容量和低成本,源码成为了理想的分析存储选择。然而,署源OSS的码剖一些特性给数据库设计者提出了挑战。

       Delta Lake是源码Databricks在OSS基础上构建的表存储层,我们通过研究其文档和源代码,分析深入剖析了Delta Lake如何应对这些挑战。署源首先,码剖Delta Lake在一个表中整合了实际数据和操作日志,源码所有文件集中存储在一个目录结构下,app菜单源码尽管OSS的文件布局是扁平的。数据以Parquet格式存储,并支持分区,同一分区的文件共享相同的子目录作为前缀。

       为解决分区键可能导致的AWS S3写入热点问题,Delta Lake引入了随机文件名前缀。表操作日志存储在_delta_log子目录中,以JSON格式记录,并按递增数字命名,包括数据文件增加、删除和schema修改。定期的checkpoint以Parquet格式保存,便于Spark并行处理。

       元数据管理上,Delta Lake利用日志跟踪所有操作,vr公式源码构建实时快照,这在处理大量数据时效率高,避免了Hive元数据存储成为性能瓶颈。通过缓存优化,减少逻辑构造成本。虽然日志方案高效,但初始设计中未考虑high metastore,后来认识到其对全局视图的必要性,但需保持高效,避免成为性能瓶颈。

       Delta Lake采用乐观并发控制策略,实现文件级的MVCC。写事务基于快照更新数据并记录操作,读事务基于快照读取。事务处理策略保证了原子性和隔离性,0.5的源码同时设计了容忍最终一致性,确保数据一致性。此外,优化小文件和data skipping策略,以及Z-Ordering机制,提高了数据处理效率。

       总结来说,Delta Lake在云对象存储上构建的高效分析型数据库方案,尽管存在一些局限,但对于大数据处理和简化Lambda架构,仍表现出色。深入研究Delta Lake的设计,有助于我们更好地理解和利用这种技术。

SQL Server CU5带来了哪些新功能和改进?

       SQL Server 焕然一新:CU5累积更新带来重大突破

       自SQL Server 全面登陆以来,微软持续创新,云平台 源码引领数据处理新纪元。近期,我们迎来了期待已久的SQL Server Cumulative Update (CU5)。这次更新不仅增强了原有的大数据集群(BDC),更在多个关键领域实现了显著扩展。

       CU5焦点:BDC功能升级

       CU5的亮点在于,BDC现在支持在红帽OpenShift Kubernetes平台上无缝部署,这意味着企业用户可以在Linux容器中更高效地利用SQL Server。更重要的是,运行在BDC中的应用程序现在以非根用户身份启动,提升了安全性和隔离性,而对先前部署的BDC,这一改变是兼容的,无需额外操作。

       同时,CU5允许在同一活动目录域中部署多个BDC,为大型企业提供了更大的灵活性。数据虚拟化体验也得到了丰富,sp_data_source_objects和sp_data_source_columns两个存储过程的引入,让数据管理更为直观和高效。

       开源互联的增强

       开放源码社区的力量得到了深化,CU5中Apache Spark SQL连接器得到了加强,以Apache V2许可开放,推动了SQL Server与Azure SQL Connector之间的无缝协作。开发者们将能期待更多连接器功能的更新,助力企业级数据处理。

       总结来说,SQL Server CU5是一个里程碑式的更新,它不仅提升了数据处理能力,还加强了与开源生态的连接,让数据驱动的决策更加智能和灵活。欲了解更多详细信息,请关注我们的官方博客,那里将有深入的剖析和实操教程。

       标签: SQL Server , Kubernetes, OpenShift, 数据虚拟化

Spark-Submit 源码剖析

       直奔主题吧:

       常规Spark提交任务脚本如下:

       其中几个关键的参数:

       再看下cluster.conf配置参数,如下:

       spark-submit提交一个job到spark集群中,大致的经历三个过程:

       代码总Main入口如下:

       Main支持两种模式CLI:SparkSubmit;SparkClass

       首先是checkArgument做参数校验

       而sparksubmit则是通过buildCommand来创建

       buildCommand核心是AbstractCommandBuilder类

       继续往下剥洋葱AbstractCommandBuilder如下:

       定义Spark命令创建的方法一个抽象类,SparkSubmitCommandBuilder刚好是实现类如下

       SparkSubmit种类可以分为以上6种。SparkSubmitCommandBuilder有两个构造方法有参数和无参数:

       有参数中根据参数传入拆分三种方式,然后通过OptionParser解析Args,构造参数创建对象后核心方法是通过buildCommand,而buildCommand又是通过buildSparkSubmitCommand来生成具体提交。

       buildSparkSubmitCommand会返回List的命令集合,分为两个部分去创建此List,

       第一个如下加入Driver_memory参数

       第二个是通过buildSparkSubmitArgs方法构建的具体参数是MASTER,DEPLOY_MODE,FILES,CLASS等等,这些就和我们上面截图中是对应上的。是通过OptionParser方式获取到。

       那么到这里的话buildCommand就生成了一个完成sparksubmit参数的命令List

       而生成命令之后执行的任务开启点在org.apache.spark.deploy.SparkSubmit.scala

       继续往下剥洋葱SparkSubmit.scala代码入口如下:

       SparkSubmit,kill,request都支持,后两个方法知识支持standalone和Mesos集群方式下。dosubmit作为函数入口,其中第一步是初始化LOG,然后初始化解析参数涉及到类

       SparkSubmitArguments作为参数初始化类,继承SparkSubmitArgumentsParser类

       其中env是测试用的,参数解析如下,parse方法继承了SparkSubmitArgumentsParser解析函数查找 args 中设置的--选项和值并解析为 name 和 value ,如 --master yarn-client 会被解析为值为 --master 的 name 和值为 yarn-client 的 value 。

       这之后调用SparkSubmitArguments#handle(MASTER, "yarn-client")进行处理。

       这个函数也很简单,根据参数 opt 及 value,设置各个成员的值。接上例,parse 中调用 handle("--master", "yarn-client")后,在 handle 函数中,master 成员将被赋值为 yarn-client。

       回到SparkSubmit.scala通过SparkSubmitArguments生成了args,然后调用action来匹配动作是submit,kill,request_status,print_version。

       直接看submit的action,doRunMain执行入口

       其中prepareSubmitEnvironment初始化环境变量该方法返回一个四元 Tuple ,分别表示子进程参数、子进程 classpath 列表、系统属性 map 、子进程 main 方法。完成了提交环境的准备工作之后,接下来就将启动子进程。

       runMain则是执行入口,入参则是执行参数SparkSubmitArguments

       Main执行非常的简单:几个核心步骤

       先是打印一串日志(可忽略),然后是创建了loader是把依赖包jar全部导入到项目中

       然后是MainClass的生成,异常处理是ClassNotFoundException和NoClassDeffoundError

       再者是生成Application,根据MainClass生成APP,最后调用start执行

       具体执行是SparkApplication.scala,那么继续往下剥~

       仔细阅读下SparkApplication还是挺深的,所以打算另外写篇继续深入研读~