1.OpenCV中几种卷积的实现方式
2.人脸识别的对比 – OpenCV, Dlib and Deep Learning
3.OpenCV中DNN库的架构
4.OpenCV/dnn库的各层实现架构
5.opencv中的Dnn模块怎么用Java调用
6.在windows11上编译opencv使用cuda加速
OpenCV中几种卷积的实现方式
自从opencv引入dnn模块后,卷积实现方式不断扩展,以适应PC、手机、边缘计算设备的部署需求。目前,个性签名制作源码在哪里可调用CUDA、OpenCL、Tengine、Vulkan实现卷积。Tengine、Vulkan特别适用于移动设备和边缘计算,它们内部是如何实现的?
Vulkan是一个渲染库,与OpenGL、DirectX等GPU渲染库相比,移动设备上使用较多,而深度学习模型又需要在移动设备上部署。因此,探索是否可以使用Vulkan实现卷积等深度学习操作。
接下来,让我们看看OpenCV是如何使用Vulkan实现深度神经网络中的卷积。
打开OpenCV源码库的modules/dnn/src目录,可以看到最后一个文件夹是vkcom。"vkcom"这个名字由"Vulkan"库本身与"comp"(glsl语言的源代码后缀)组成。glsl语言可以通过以下命令编译:“vkcom”。GLSL是OpenGL着色语言,用于编写OpenGL着色器的编程语言,通常与并行处理功能强大的GPU结合使用。深度学习操作如卷积、池化都是对图像颜色的处理,因此可以将这些操作实现为着色器,用GLSL编写,然后使用Vulkan调用GPU。
Vulkan实现的卷积代码示例如下:
代码中指定了输入输出变量(第3、6、entryset 方法源码9、行)。在第行计算了输出变量convolved_image_data的值。第行开始的for循环遍历卷积核的c、w、h,计算单个像素位置的卷积结果。显然,这个卷积仅计算一个像素位置的卷积结果,卷积核的滑动过程由Vulkan管理GPU,多个GPU计算单元并行完成。
在OpenCV中,文件conv.comp首先被编译为二进制,然后将此二进制作为字符串放入conv_spv.cpp中。cpp文件定义了conv_spv数组,其中包含编译后的卷积着色器执行代码。由OpBase::createShaderModule函数将此二进制送入vkCreateShaderModule,从而调度GPU。
通过分析代码,可以看到Vulkan实现的算子被调用的方式,这同样适用于CUDA、OpenCL、Ngraph、Inference Engine等实现的算子。
Vulkan渲染库在OpenCV中的调用逻辑已经阐述完毕。Tengine是如何使用的?在convolution_layer.cpp的forward函数的行,调用了tengine_forward(tengine_graph)。
Tengine_forward来自teng_run_graph函数,我们只需调用库即可得到结果。传入的graph是卷积图,由create_conv_graph在第行创建。create_conv_graph使用create_conv_node、create_input_node生成卷积算子所需的图。
使用Tengine相对使用Vulkan、动漫小偷源码CUDA等库完成算子,要简单许多。调用库内的函数生成节点,使用节点构建图即可,无需自己实现算子内的计算。
本文概述了OpenCV中卷积实现方式的多样性,以下为总结:
本文详细分析了使用Vulkan用着色器实现卷积计算的方法及其调用路径,这个路径在分析其他类型实现时也很有用。本文还探讨了不同库算子的兼容性。当然,不同算子兼容还涉及更多细节,本文仅关注卷积forward函数的传递。
本文后半部分简要介绍了Tengine在OpenCV中的集成。发现集成过程相对简单,在convolution_layer.cpp中直接运行Tengine库构建的卷积计算图。这也表明,如果存在更好的边缘计算库,很容易集成到OpenCV中。
通过几天的分析,我们已经了解了OpenCL、Vulkan、Tengine的实现方式。可以预计,CUDA、Halide、Inference Engine nn、Inference Engine NGraph等实现也会类似。
人脸识别的对比 – OpenCV, Dlib and Deep Learning
在本教程中,我们将比较和探讨OpenCV、Dlib和深度学习中的几种人脸识别方法。我们将提供代码示例,并讨论每种方法的优缺点,同时分享如何根据特定应用选择合适模型的实用规则。 我们假设图像尺寸为×。isspace函数源码一、OpenCV中的Haar级联人脸检测器
基于Haar级联的人脸检测技术自年Viola和Jones提出以来,一直是先进的人脸检测技术。近年来进行了许多改进,OpenCV提供了多种基于Haar的模型。 代码示例用于加载haar级联模型文件并将其应用于灰度图像。输出包含检测到的面孔列表,每个成员是包含坐标和尺寸的四个元素列表。优点
简单、高效,适合实时应用。缺点
可能在检测复杂背景下的小或部分遮挡的脸时表现不佳。二、OpenCV中的DNN人脸检测器
这种模型基于ResNet-架构,使用Caffe或TensorFlow进行训练。输出为归一化坐标,表示边界框。 代码加载模型,并使用前向传播进行检测。输出为4-D矩阵,边界框坐标需乘以原始图像大小。优点
克服了Haar级联的缺点,适用于更复杂背景。缺点
计算速度慢于基于Haar的检测器。三、Dlib中的HoG Face检测器
基于HoG特征和SVM的模型,由5个HOG过滤器组成,适用于多种视角。模型嵌入头文件中。 代码加载检测器,将图像通过检测器,输出为包含坐标和大小的面部列表。优点
适用于多种条件,如非正面角度。onethink源码分享缺点
可能在检测小脸时表现不佳。四、Dlib中的CNN人脸检测器
基于CNN的检测器,使用MMOD(最大边缘对象检测器)训练。训练过程简单,无需大量数据。代码加载模型,输出坐标。优点
适用于多种角度和大小的人脸检测。缺点
速度较慢。五、准确度对比
使用FDDB数据集评估模型。结果表明,Dlib在视觉上表现更好,但准确性稍逊于Haar级联和OpenCV-DNN。主要原因是输出边界框大小不同,以及Dlib模型在小脸检测方面存在局限性。优点
视觉上更精确的边界框。缺点
在准确性评估时存在偏见,尤其在小脸检测方面。六、速度对比
使用×图像评估方法的实时性。OpenCV-DNN、Dlib和Dlib的CNN检测器在CPU和GPU上均有显著差异。硬件
处理器:英特尔酷睿i7 KRAM: GB
GPU:NVIDIA GTX Ti, GB内存
操作系统:Linux . LTS
编程语言:Python
代码
在给定图像上运行每个方法次,结果表明除了MMOD外,所有方法均能在实时内执行。MMOD在GPU上非常快,但在CPU上速度较慢。结论
综上所述,建议在大多数情况下使用OpenCV-DNN,因为它快速且准确,即使面对小尺寸人脸。对于中、大型图像尺寸,Dlib的HoG检测器在CPU上速度较快,适用于已知不会处理非常小面孔的应用。高分辨率照片处理时,OpenCV-DNN方法表现较好,因为它能检测小面孔。基于这些分析,可根据具体应用选择合适的人脸识别方法。OpenCV中DNN库的架构
OpenCV/DNN库架构清晰,核心计算单元为算子。算子通过节点被调用,节点在层的前向计算过程中选择性地执行。层的前向计算在网络的前向计算函数中被调用。层内容包含了层对象、输入输出矩阵以及需要调用的节点,多个层内容组成网络。为兼容不同层,使用工厂模式生成层;为兼容不同后台算子,使用策略模式生成节点与数据转换器。
网络架构包括:网络、层内容和层。网络负责整合层内容与层,层内容整合层对象、计算节点、数据转换器与矩阵,用于前向计算。层内容中的计算节点负责具体计算,包含输入数据地址和各种算子,算子可能使用不同后台库实现。
算子可以由不同后台库如vkcom、inf_engine、CUDA等实现,仅需直接调用相关库函数。计算节点用于调用算子,处理不同计算需求。此外,库中也包含直接实现的GPU与CPU算子,包括OpenCL与多线程算子。这些算子同样在层对象的前向计算中被选择性调用。
计算节点扩展了层的计算方式,提供灵活的计算支持。CPU多线程与OpenCL也能够包装成计算节点形式。其他库实现的计算也参照计算节点写法,或采用相似实现方式。OpenCV/DNN库架构清晰,灵活支持各种计算需求。
OpenCV/dnn库的各层实现架构
OpenCV/dnn库的深度网络架构解析
OpenCV/dnn的核心数据结构,即LayerData,是构建深度网络的关键。通过Net类的map结构,这个数据结构构建了一个有向图,代表了网络的层级结构。一旦初始化完毕,map中的所有信息配置完毕,就可以启动深度网络的前向传播过程。 LayerData内部结构详述:它包含了层的编号、名称、类型,以及与计算相关的对象,如计算实例layerInstance和数据转换器。
layerInstance存储了当前层的计算对象,OpenCV/dnn通过工厂模式动态获取,例如,输入层类型为卷积时,会返回一个Convolution_Layer对象。
工厂模式在这里扮演了核心角色,LayerFactory类就是这个“工厂”,通过createLayerInstance函数,根据输入的层类型和参数,生成并返回对应的具体层对象,如Convolution_Layer。 为了统一接口,抽象出了Layer类,而Convolution_Layer等具体层类型成为其子类。这样,无论传入哪种类型的层,LayerFactory都能根据预注册的信息生成相应的对象。 LayerFactory的实现涉及一个表,存储着层类型与其构造函数的对应关系。当需要创建新的层时,工厂会从表中找到对应构造函数并执行,从而得到所需层的实例,如Convolution_Layer。 为了简化注册过程,引入了宏,允许将模版函数直接注册,这样在需要创建层时,只需调用预定义的注册函数,即可得到完整的层对象。一旦所有层都完成注册,LayerData的getLayerInstance()函数就能在运行时获取并执行其计算功能。 综上,OpenCV/dnn库通过这种设计,实现了深度网络中层的动态创建和计算过程的高效管理。opencv中的Dnn模块怎么用Java调用
1.检查环境变量设定。
比如:所编辑的Dll在目录“D:/cppProjects/nativecode/release”内,将这个路径复制添加到电脑的环境变量中的path变量内即可。
2.检查项目属性设定。
右击项目名|选择属性properties|在左边列表内选择“Java Build Path”|在右边选项卡用选择“source”|点开项目名前的“+”号,选择“Native library location”,“Edit”选择上面“D:/cppProjects/nativecode/release”路径。(当然如果将dll拷贝到workspace下也可以用相对路径。也可右击“src”设定其properties内Native Library项。)
在windows上编译opencv使用cuda加速
在Windows 环境下,利用CUDA加速OpenCV的编译过程可以显著提升性能。以下是具体步骤的概述:
1. **环境与软件准备**:
- 安装Windows 、Visual Studio 、CMake-gui以及Anaconda(用于管理Python环境)。
- 确保已安装CUDA工具包、Visual Studio编译器,还需下载OpenCV源码和opencv-contrib源码。
- 需要安装CUDA及CUDNN环境,确保Opencv与opencv-contrib版本匹配。
2. **安装步骤**:
- 下载并安装Visual Studio 和CMake-gui。
- 使用管理员权限打开CMake-gui,设置OpenCV源码路径,可能需要设置Python路径(如果安装在虚拟环境中)。
- 配置Visual Studio版本和平台(位)。
- 配置过程中,确保WITH_CUDA、OPENCV_DNN_CUDA、ENABLE_FAST_MATH等CUDA相关选项被选中,并勾选BUILD_opencv_python3和opencv_contrib模块。
3. **编译过程**:
- 打开CMake-gui,配置CUDA架构(根据显卡型号选择合适的算力)。
- 生成Visual Studio项目(OpenCV.sln),并选择对应版本的Visual Studio打开。
- 选择release版本和x平台进行编译,这可能需要几分钟。
- 完成第一个编译后,进行安装,将OpenCV安装到Anaconda环境中。
4. **测试与参考**:
- 编译成功后,可通过打印数值确认。编译教程参考了如下的博客:
- [opencv-python使用GPU资源](/lujx_/article/details/)
- [CMake编译OpenCV 4.5.5/4.6.0/4.7.0 GPU版及VS配置](/optimistwenshen/article/details/)
- [Windows上编译OpenCV使用CUDA加速DNN模型推理](/optimistwenshen/article/details/)
通过以上步骤,您可以在Windows 上利用CUDA为OpenCV编译加速,提升深度学习和计算机视觉任务的性能。
OpenCV图像处理-DNN模块之分类和检测应用
OpenCV图像处理 - DNN模块的分类和检测应用
OpenCV的深度学习模块(DNN)涵盖了丰富的功能,本文将探讨如何结合GoogleNet进行图像分类和利用Mobilenet-SSD进行目标检测。首先,让我们了解一下DNN模块的应用概况。 DNN模块支持多种深度学习框架的预训练模型,如OpenCV的通用API,允许解析自定义层、执行非最大抑制操作并获取各层信息。例如,加载模型的基本步骤如下:cv2.dnn.readNet(model_path, weights_path)
针对图像分类,我们以支持类的ImageNet数据集和GoogleNet为例,使用OpenCV实现图像标签预测,标签信息存储在文本文件中,读取模型的API如下:labels = read_label_file('labels.txt')
net.setInput(...)
接着,通过将读取的图像转换为四维张量输入模型,进行预测:input_blob = cv2.dnn.blobFromImage(image, ...)
net.forward(input_blob)
对于目标检测,OpenCV的DNN模块支持SSD(Single Shot MultiBox Detector)和Mobile Net-SSD。以Caffe训练的Mobile Net-SSD为例,用于单张和视频检测。视频检测的代码部分有所修改://... (代码调整部分)
通过以上步骤,您可以开始在OpenCV中利用DNN模块进行图像分类和目标检测。对于更多教程和资源,您可以关注GitHub上的OpenCV教程,中文和英文版本都欢迎star支持。2024-11-25 01:47403人浏览
2024-11-25 01:40375人浏览
2024-11-25 00:55821人浏览
2024-11-25 00:35614人浏览
2024-11-25 00:23674人浏览
2024-11-25 00:01786人浏览
1.亚马逊大佬们卖家手机用什么软件比较好?2.为什么赤龙erp不到2年时间,开源社区码云可以做到所3.亚马逊船长和asinking领星,两个erp系统优缺点对比?4.亚马逊ERP是什么?有什么用处?5
1.怎么把通达信指标添加到自选股里?2.怎么把指标导入通达信3.怎么把通达信里的指标导入到东方财富里面?怎么把通达信指标添加到自选股里? 一、手机版指标导入流程图解 通达信手机版不能使用选股指
1.易语言中威廉指标的写法是怎么样的?2.wr指标选股公式3.大智慧威廉指标公式易语言中威廉指标的写法是怎么样的? wr中文称威廉指标,表示当天的收盘价在过去一段日子的全部价格范围内所处的相对位置