1.【Python文本数据系列】使用LSTM模型进行文本情感分析(案例+源码)
2.利用Python爬虫爬取淘宝商品做数据挖掘分析实战篇,数据数据超详细教程
3.教你阅读 Cpython 的源码源源码(一)
4.七爪源码:Python 中的数据预处理:准备好数据集的 4 个基本步骤
5.Python数据分析实战-对DataFrame(Excel)某列的数值进行替换操作(附源码和实现效果)
6.Python数据分析实战-实现T检验(附源码和实现效果)
【Python文本数据系列】使用LSTM模型进行文本情感分析(案例+源码)
本文将通过具体实例讲解如何使用LSTM模型进行文本情感分析。首先,教学数据准备阶段,数据数据需读取数据并将影评情感转换为0和1的源码源数值,同时,教学商城系统商家源码将影评和情感转化为numpy数组。数据数据接着,源码源进行文本预处理,教学划分训练集和测试集,数据数据构建分词器,源码源并将字符串转化成整数索引组成的教学列表,将整数列表转化为二维数值张量。数据数据
模型搭建部分,源码源使用Sequential类定义模型,教学包含Embedding词嵌入层、双向LSTM层、全连接层和输出层。Embedding层将单词转换为词向量,双向LSTM层捕捉文本的双向信息,全连接层进行特征整合,输出层使用sigmoid激活函数输出情感概率。损失函数、优化器和评估指标在模型定义时设定。
模型训练与评估,自动调整迭代次数以防止过拟合,开始训练并评估模型性能。结果显示,经过4次迭代后模型出现过拟合现象,准确率为%。基于深度学习的模型在文本情感分析任务上展现出强大能力。
作者拥有丰富的科研实践经验和数据算法相关知识,分享Python、数据分析、机器学习、深度学习等系列基础知识与案例。致力于原创内容,以最简单方式教授复杂概念。有源码怎么做网站链接如有需求数据和源码,欢迎关注并联系作者。
利用Python爬虫爬取淘宝商品做数据挖掘分析实战篇,超详细教程
项目内容
案例选择商品类目:沙发;数量:共页个商品;筛选条件:天猫、销量从高到低、价格元以上。
以下是分析,源码点击文末链接
项目目的
1. 对商品标题进行文本分析,词云可视化。
2. 不同关键词word对应的sales统计分析。
3. 商品的价格分布情况分析。
4. 商品的销量分布情况分析。
5. 不同价格区间的商品的平均销量分布。
6. 商品价格对销量的影响分析。
7. 商品价格对销售额的影响分析。
8. 不同省份或城市的商品数量分布。
9. 不同省份的商品平均销量分布。
注:本项目仅以以上几项分析为例。
项目步骤
1. 数据采集:Python爬取淘宝网商品数据。
2. 数据清洗和处理。
3. 文本分析:jieba分词、wordcloud可视化。
4. 数据柱形图可视化barh。
5. 数据直方图可视化hist。
6. 数据散点图可视化scatter。
7. 数据回归分析可视化regplot。
工具&模块:
工具:本案例代码编辑工具Anaconda的Spyder。
模块:requests、retrying、missingno、jieba、matplotlib、wordcloud、imread、seaborn等。
原代码和相关文档后台回复“淘宝”下载。
一、维修记录管理vb6源码爬取数据
因淘宝网是反爬虫的,虽然使用多线程、修改headers参数,但仍然不能保证每次%爬取,所以,我增加了循环爬取,直至所有页爬取成功停止。
说明:淘宝商品页为JSON格式,这里使用正则表达式进行解析。
代码如下:
二、数据清洗、处理:
(此步骤也可以在Excel中完成,再读入数据)
代码如下:
说明:根据需求,本案例中只取了item_loc、raw_title、view_price、view_sales这4列数据,主要对标题、区域、价格、销量进行分析。
代码如下:
三、数据挖掘与分析:
1. 对raw_title列标题进行文本分析:
使用结巴分词器,安装模块pip install jieba。
对title_s(list of list格式)中的每个list的元素(str)进行过滤,剔除不需要的词语,即把停用词表stopwords中有的词语都剔除掉:
为了准确性,这里对过滤后的数据title_clean中的每个list的元素进行去重,即每个标题被分割后的词语唯一。
观察word_count表中的词语,发现jieba默认的词典无法满足需求。
有的词语(如可拆洗、不可拆洗等)却被cut,这里根据需求对词典加入新词(也可以直接在词典dict.txt里面增删,然后载入修改过的dict.txt)。
词云可视化:
安装模块wordcloud。
方法1:pip install wordcloud。心居百度资源码
方法2:下载Packages安装:pip install 软件包名称。
软件包下载地址:lfd.uci.edu/~gohlke/pyt...
注意:要把下载的软件包放在Python安装路径下。
代码如下:
分析
1. 组合、整装商品占比很高;
2. 从沙发材质看:布艺沙发占比很高,比皮艺沙发多;
3. 从沙发风格看:简约风格最多,北欧风次之,其他风格排名依次是美式、中式、日式、法式等;
4. 从户型看:小户型占比最高、大小户型次之,大户型最少。
2. 不同关键词word对应的sales之和的统计分析:
(说明:例如词语‘简约’,则统计商品标题中含有‘简约’一词的商品的销量之和,即求出具有‘简约’风格的商品销量之和)
代码如下:
对表df_word_sum中的word和w_s_sum两列数据进行可视化。
(本例中取销量排名前的词语进行绘图)
由图表可知:
1. 组合商品销量最高;
2. 从品类看:布艺沙发销量很高,远超过皮艺沙发;
3. 从户型看:小户型沙发销量最高,大小户型次之,大户型销量最少;
4. 从风格看:简约风销量最高,北欧风次之,其他依次是中式、美式、日式等;
5. 可拆洗、转角类沙发销量可观,也是颇受消费者青睐的。
3. 商品的价格分布情况分析:
分析发现,有一些值太大,为了使可视化效果更加直观,这里我们选择价格小于的商品。
代码如下:
由图表可知:
1. 商品数量随着价格总体呈现下降阶梯形势,价格越高,在售的商品越少;
2. 低价位商品居多,价格在-之间的商品最多,-之间的次之,价格1万以上的商品较少;
3. 价格1万元以上的商品,在售商品数量差异不大。
4. 商品的波段买卖力道指标源码销量分布情况分析:
同样,为了使可视化效果更加直观,这里我们选择销量大于的商品。
代码如下:
由图表及数据可知:
1. 销量以上的商品仅占3.4%,其中销量-之间的商品最多,-之间的次之;
2. 销量-之间,商品的数量随着销量呈现下降趋势,且趋势陡峭,低销量商品居多;
3. 销量以上的商品很少。
5. 不同价格区间的商品的平均销量分布:
代码如下:
由图表可知:
1. 价格在-之间的商品平均销量最高,-之间的次之,元以上的最低;
2. 总体呈现先增后减的趋势,但最高峰处于相对低价位阶段;
3. 说明广大消费者对购买沙发的需求更多处于低价位阶段,在元以上价位越高平均销量基本是越少。
6. 商品价格对销量的影响分析:
同上,为了使可视化效果更加直观,这里我们选择价格小于的商品。
代码如下:
由图表可知:
1. 总体趋势:随着商品价格增多其销量减少,商品价格对其销量影响很大;
2. 价格-之间的少数商品销量冲的很高,价格-之间的商品多数销量偏低,少数相对较高,但价格以上的商品销量均很低,没有销量突出的商品。
7. 商品价格对销售额的影响分析:
代码如下:
由图表可知:
1. 总体趋势:由线性回归拟合线可以看出,商品销售额随着价格增长呈现上升趋势;
2. 多数商品的价格偏低,销售额也偏低;
3. 价格在0-的商品只有少数销售额较高,价格2万-6万的商品只有3个销售额较高,价格6-万的商品有1个销售额很高,而且是最大值。
8. 不同省份的商品数量分布:
代码如下:
由图表可知:
1. 广东的最多,上海次之,江苏第三,尤其是广东的数量远超过江苏、浙江、上海等地,说明在沙发这个子类目,广东的店铺占主导地位;
2. 江浙沪等地的数量差异不大,基本相当。
9. 不同省份的商品平均销量分布:
代码如下:
热力型地图
源码:Python爬取淘宝商品数据挖掘分析实战
教你阅读 Cpython 的源码(一)
目录1. CPython 介绍
在Python使用中,你是否曾好奇字典查找为何比列表遍历快?生成器如何记忆变量状态?Cpython,作为流行版本,其源代码为何选择C和Python编写?Python规范,内存管理,这里一一揭示。 文章将深入探讨Cpython的内部结构,分为五部分:编译过程、解释器进程、编译器和执行循环、对象系统、以及标准库。了解Cpython如何工作,从源代码下载、编译设置,到Python模块和C模块的使用,让你对Python核心概念有更深理解。 2. Python 解释器进程 学习过程包括配置环境、文件读取、词法句法解析,直至抽象语法树。理解这些步骤,有助于你构建和调试Python代码。 3. Cpython 编译与执行 了解编译过程如何将Python代码转换为可执行的中间语言,以及字节码的缓存机制,将帮助你认识Python的编译性质。 4. Cpython 中的对象 从基础类型如布尔和整数,到生成器,深入剖析对象类型及其内存管理,让你掌握Python数据结构的核心。 5. Cpython 标准库 Python模块和C模块的交互,以及如何进行自定义C版本的安装,这些都是Cpython实用性的体现。 6. 源代码深度解析 从源代码的细节中,你会发现编译器的工作原理,以及Python语言规范和tokenizer的重要性,以及内存管理机制,如引用计数和垃圾回收。 通过本文,你将逐步揭开Cpython的神秘面纱,成为Python编程的高手。继续深入学习,提升你的Python技能。 最后:结论 第一部分概述了源代码、编译和Python规范,后续章节将逐步深入,让你在实践中掌握Cpython的核心原理。 更多Python技术,持续关注我们的公众号:python学习开发。七爪源码:Python 中的数据预处理:准备好数据集的 4 个基本步骤
Python 数据预处理四步骤指南
数据预处理对于机器学习模型的精度至关重要。它确保数据的清洁度和一致性,尤其是在处理分类和数值数据时。下面将介绍准备数据集的四个关键步骤。 首先,导入 NumPy 和 Pandas,通过.csv 文件加载数据,以可视化数据集。 数据包含数值和分类变量,需将其分为特征和标签,以便使用scikit-learn进行预处理。1. 处理缺失值
现实数据中常有缺失值,需妥善处理。使用SimpleImputer,通过missing_values参数指定缺失值,如使用均值(数值数据),并运用.fit和.transform方法处理。2. 编码分类变量
分类数据需转换为数值,以便模型理解。如本例采用One Hot Encoding,为每个类别创建二进制特征。3. 编码因变量
同样,标签(分类)也需编码,这里使用LabelEncoder,将标签值规范化为0到n_classes-1之间。4. 训练-测试拆分
为了评估模型性能,将数据集分为训练集和测试集,便于模型应用和性能对比。 通过以上步骤,数据预处理为模型开发奠定了基础,确保数据准备就绪。记得在实践中运用这些技巧。Python数据分析实战-对DataFrame(Excel)某列的数值进行替换操作(附源码和实现效果)
实现功能:
本文将展示如何在Python中使用pandas库对DataFrame(Excel)中的某列数值进行替换操作,并提供相关源码和实现效果,旨在帮助您掌握数据处理技巧。
代码分为以下两种情况:
1、将A列的数值进行直接替换,例如将A列中的1替换为,3替换为,4替换为
代码示例:
python
import pandas as pd
# 加载Excel文件
df = pd.read_excel('data.xlsx')
# 直接替换A列数值
df['A'] = df['A'].replace({ 1:, 3:, 4:})
# 保存替换后数据
df.to_excel('updated_data.xlsx', index=False)
2、将A列的数值进行替换为新的数值(新建新的一列),例如新建E列,将A列中替换为1
代码示例:
python
import pandas as pd
# 加载Excel文件
df = pd.read_excel('data.xlsx')
# 创建新列并替换A列数值
df['E'] = df['A'].replace({ :1})
# 保存替换后数据
df.to_excel('updated_data.xlsx', index=False)
实现效果:
上述代码执行后,将对原始数据文件进行处理,将指定列的特定数值替换为新的数值,并生成更新后的数据文件。通过替换操作,您可以快速调整数据,满足数据分析和处理需求。
Python数据分析实战-实现T检验(附源码和实现效果)
T检验是一种用于比较两个样本均值是否存在显著差异的统计方法。广泛应用于各种场景,例如判断两组数据是否具有显著差异。使用T检验前,需确保数据符合正态分布,并且样本方差具有相似性。T检验有多种变体,包括独立样本T检验、配对样本T检验和单样本T检验,针对不同实验设计和数据类型选择适当方法至关重要。
实现T检验的Python代码如下:
python
import numpy as np
import scipy.stats as stats
# 示例数据
data1 = np.array([1, 2, 3, 4, 5])
data2 = np.array([2, 3, 4, 5, 6])
# 独立样本T检验
t_statistic, p_value = stats.ttest_ind(data1, data2)
print(f"T统计量:{ t_statistic}")
print(f"显著性水平:{ p_value}")
# 根据p值判断差异显著性
if p_value < 0.:
print("两个样本的均值存在显著差异")
else:
print("两个样本的均值无显著差异")
运行上述代码,将输出T统计量和显著性水平。根据p值判断,若p值小于0.,则可认为两个样本的均值存在显著差异;否则,认为两者均值无显著差异。
实现效果
根据上述代码,执行T检验后,得到的输出信息如下:
python
T统计量:-0.
显著性水平:0.
根据输出结果,T统计量为-0.,显著性水平为0.。由于p值大于0.,我们无法得出两个样本均值存在显著差异的结论。因此,可以判断在置信水平为0.时,两个样本的均值无显著差异。
Python数据分析系列读取Excel文件中的多个sheet表(案例+源码)
在Python中使用pandas库,读取Excel文件中的多个sheet表变得极其便捷。假设有一个名为“光谱响应函数.xlsx”的Excel文件,其中包含多个sheet表。
Excel文件,如同数据库,存储着一张或多张数据表。本文将展示如何依次读取Excel文件中的每一个sheet表。
首先,定义excel文件路径,通过pd.ExcelFile()创建一个Excel文件对象xls。利用该对象的sheet_names方法获取所有sheet表名称。然后,借助pd.read_excel函数,逐一读取每一个sheet表,并进行后续的统一处理。
以sheet_name为“ch”的读取结果为例,展示读取后的数据内容。
作者拥有丰富的科研经历,期间在学术期刊发表六篇SCI论文,专注于数据算法研究。目前在某研究院从事数据算法相关工作,致力于分享Python、数据分析、特征工程、机器学习、深度学习、人工智能等基础知识与实际案例。撰写内容时坚持原创,以简洁的方式解释复杂概念,欢迎关注公众号“数据杂坛”,获取更多数据和源码学习资源。
欲了解更多详情,请参考原文链接。
Python数据分析系列多个dataframe写入同一个excel文件(案例源码)
本文演示如何使用Python的pandas库将多个DataFrame写入同一个Excel文件中,每个DataFrame作为独立的sheet。通过以下步骤实现:
首先,创建两个DataFrame df1 和 df2。然后指定Excel文件路径为"dataframes.xlsx"。使用pd.ExcelWriter()创建ExcelWriter对象,通过to_excel()方法将df1和df2写入Excel文件的不同sheet中,分别命名为Sheet1和Sheet2。最后,运行代码后,会在指定路径下生成包含两个sheet的"dataframes.xlsx"文件。
运行示例代码,你将看到在指定路径下生成的"dataframes.xlsx"文件,该文件包含df1和df2的数据。
本文由一位在读研期间发表6篇SCI数据算法相关论文的作者撰写,目前在某研究院从事数据算法研究工作。作者致力于只做原创,以简单易懂的方式分享Python、数据分析、特征工程、机器学习、深度学习和人工智能等基础知识与案例。关注公众号"数据杂坛",获取更多内容。
原文链接:Python数据分析系列多个dataframe写入同一个excel文件(案例源码)
vlc下载源码_vlc 源代码
网页水果机 源码_网络版水果机源码
如何查看子页面源码_页面源码怎么看
贷款软件源码修改教程_贷款app源码搭建教程
看懂android源码_android 源码
c 高级编程9 源码_c 高级编程下载