【公共类源码大全】【小储云源码免费】【极端行情副图源码】字典源码_字典源码下载

2024-11-24 21:31:03 来源:点菜源码 分类:时尚

1.map和字典的字典字典区别
2.C#浅析C# Dictionary实现原理
3.jieba源码解析(一)——中文分词
4.Redis 源码分析字典(dict)

字典源码_字典源码下载

map和字典的区别

       第一个区别就先来说说继承关系吧

       如果你baidu一下,会发现网上的源码源码大致说法与“由于Java发展的历史原因。Hashtable是下载基于陈旧的Dictionary类的,HashMap是字典字典Java 1.2引进的Map接口的一个实现。”相同。源码源码

       这种说法没有错,下载公共类源码大全但是字典字典不够准确,特别是源码源码对于我们这种大众菜鸟来说,如果不去深究的下载话,可能就会造成一些理解上的字典字典差异。简单的源码源码认为Hashtable没有继承Map接口。

       我们可以参考一下最新的下载JDK1.6的源码,看看这两个类的字典字典定义:

       public class Hashtable<K,V>extends Dictionary<K,V> implements Map<K,V>, Cloneable, java.io.Serializable { …}

       public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable { …}

       可以看到hashtable也是继承了Map接口。

       它们的源码源码不同是Hashtable(since JDK1.0)就继承了Dictionary这个抽象类,

       而HashMap(since JDK1.2)继承的下载则是AbstractMap这个抽象类。

       第二个区别我们从同步和并发性上来说说它们两个的不同。

       可以通过这两个类得源码来分析,Hashtable中的主要方法都做了同步处理,而HashMap则没有。

       可以说Hashtable在默认情况支持同步,而HashMap在默认情况下是不支持的。

       我们在多线程并发的小储云源码免费环境下,可以直接使用Hashtable,但是要使用HashMap的话就要自己增加同步处理了。

       对HashMap的同步处理可以使用Collections类提供的synchronizedMap静态方法;

       或者直接使用JDK5.0之后提供的java.util.concurrent包里的ConcurrentHashMap类。

C#浅析C# Dictionary实现原理

       在探索新领域时,往往急于求成,依赖网络答案和他人指导,忽视了独立思考与总结的重要性。我作为一位使用C#两三年的开发者,最近被问及C#字典的基本实现原理,这促使我反思自己的学习方法。字典这种看似日常使用的工具,其实隐藏着不少底层架构的奥秘。本文将带你一起学习C#字典的源码,深入理解字典实现的细节。

       我们从源码出发,解析C#字典的核心组件与操作流程。字典内部主要有两个关键数据结构:桶(buckets)和项(entries)。桶用于存储碰撞后的元素,entries则存放实际的键值对。字典在创建时,会根据需要选择一个大于字典容量的极端行情副图源码最小质数作为桶的数量,从而为元素提供稳定的位置。

       在字典的添加操作中,我们通过哈希算法计算键的哈希值,以此定位到桶的位置,并在桶内的entries数组中找到合适的位置存放新元素。当桶内已存在元素时,字典会通过链接方式(如链表)处理碰撞,确保元素不会丢失。字典在添加元素时会自动管理内存,利用空闲链表(FreeList)来优化空间使用,减少内存分配的开销。

       删除操作则更为直接,通过哈希算法找到元素所在的位置,并从链表中移除。字典在删除元素后会利用空闲链表,将被删除的元素链接到链表的末尾,以便在后续添加元素时优先利用这些空闲资源。

       当字典的容量达到预设阈值或桶内元素过多导致性能下降时,字典会触发扩容操作。此时,字典会创建新的分时地量指标源码桶和entries数组,将原有元素重新分布,以保持良好的性能。扩容的过程需要仔细考虑桶的数量和大小,以避免过度分配或频繁调整带来的性能损耗。

       在字典的实现中,有两样关键的算法不容忽视:哈希算法和桶算法。哈希算法负责将键映射到桶的位置,而桶算法则通过链表或其他方式解决元素碰撞问题。通过理解这些算法的工作原理,我们可以更加深入地掌握字典的内部运作机制,从而在实际开发中做出更加高效和灵活的决策。

       总结而言,C#字典的实现是一个巧妙结合了数据结构和算法优化的过程。通过源码学习,我们可以清晰地看到字典如何在添加、删除、扩容等操作中保持高效和灵活。深入理解这些细节不仅有助于提升我们的编程能力,还能在后续项目中做出更加精妙的设计决策。

jieba源码解析(一)——中文分词

       全模式解析:

       全模式下的中文分词通过构建字典树和DAG实现。首先加载字典,洗盘主图源码字典树中记录词频,例如词"不拘一格"在字典树中表示为{ "不" : 0, "不拘" : 0, "不拘一" : 0, "不拘一格" : freq}。接着构造DAG,表示连续词段的起始位置。例如句子'我来到北京清华大学',分词过程如下:

       1. '我':字典树中key=0,尝试'我来',不在字典,结束位置0寻找可能的分词,DAG为 { 0:[0]}。

       2. '来':字典树中key=1,尝试'来到',在字典,继续尝试'来到北',不在字典,结束位置1寻找可能的分词,DAG为 { 0:[0], 1:[1]}。

       3. '到':字典树中key=2,尝试'来到北',不在字典,结束位置2寻找可能的分词,DAG为 { 0:[0], 1:[1], 2:[2]}。

       4. 以此类推,最终形成所有可能分词结果:我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学。

       全模式的关键代码涉及字典树和DAG的构建与使用。

       精确模式与HMM模式解析:

       精确模式与HMM模式对句子'我来到北京清华大学'的分词结果分别为:

       精确模式:'我'/'来到'/'北京'/'清华大学'

       HMM模式:'我'/'来到'/'了'/'北京'/'清华大学'

       HMM模式解决了发现新词的问题。解析过程分为三个步骤:

       1. 生成所有可能的分词。

       2. 生成每个key认为最好的分词。

       3. 按照步骤2的方式对每个key的结果从前面向后组合,注意判断单字与下个单字是否可以组成新词。

       最后,解析结果为:我/ 来到/ 北京/ 清华/ 清华大学

       HMM模式中的Viterbi算法在jieba中用于发现新词。算法通过统计和概率计算,实现新词的发现与分词。

       具体应用中,HMM模型包含五个元素:隐含状态、可观测状态、初始状态概率矩阵、隐含状态转移概率矩阵、观测状态转移概率矩阵。模型利用这些元素实现状态预测与概率计算,进而实现中文分词与新词发现。

       在Viterbi算法中,重要的是理解隐含状态、可观测状态、转移概率矩阵之间的关系,以及如何利用这些信息进行状态预测和概率计算。具体实现细节在代码中体现,包括字典树构建、DAG构造、概率矩阵应用等。

Redis 源码分析字典(dict)

       Redis 的内部字典世界:从哈希表到高效管理的深度解析

       Redis,作为开源的高性能键值存储系统,其内部实现的字典数据结构是其核心组件之一。这个数据结构采用自定义的哈希表——dictEntry,巧妙地存储和管理着键值对。让我们一起深入理解这一强大工具的运作机制。

       首先,Redis的字典是基于哈希表的,通过哈希函数将键转换为数组索引,实现高效查找。dictEntry结构巧妙地封装了键(key)、值(value)以及指向下一个节点的指针,构成了数据存储的基本单元。同时,dict包含一系列操作函数,包括哈希计算、键值复制、比较以及销毁操作,这些函数的指针类型(dictType)和实际数据结构共同构建了其高效性能。

       在字典的管理中,rehash是一个关键概念,它标志着哈希表的重新分布过程。rehash标志是一个计数器,用于跟踪当前哈希表实例的状态,确保在负载过高时进行扩容。当ht_used[0]非零,且满足特定条件(如元素数量超过初始桶数),服务器会触发resize操作,这通常在serverCron定时任务中进行,以避免磁盘I/O竞争。

       rehash过程中,Redis采取渐进式策略,通过dictRehash函数,逐个移动键值对到新哈希表,确保操作的线程安全。为了避免长时间阻塞,这个过程被分散到函数中,并通过serverCron定时任务,以毫秒级的步长进行,确保在无磁盘写操作时进行。

       在处理过期键时,dictRehashMilliseconds()函数扮演重要角色,它在rehash时监控时间消耗,确保性能。rehash过程中,dictAdd负责插入新哈希表,而dictFind和dictDelete则需处理ht_table[0]和ht_table[1]的键值对。

       Redis的默认哈希算法采用SipHash,保证了数据的分布均匀性。在持久化时,负载因子默认设置为5,而rehash后,数据结构会采用迭代器的形式,分为安全和非安全两种,以满足不同场景的需求。

       在实际操作中,如keysCommand,会选择安全模式以避免重复遍历,而在处理大规模数据时,如scan命令,可能需要使用非安全模式,但需注意可能带来的问题。

       总的来说,Redis的字典数据结构是其高效性能的基石,通过精细的哈希管理、rehash策略以及迭代器设计,确保了在高并发和频繁操作下的稳定性和性能。深入理解这些内部细节,对于优化Redis性能和应对复杂应用场景至关重要。

本文地址:http://5o.net.cn/news/41c84399115.html 欢迎转发