【menuetos 内核源码解释】【持仓线指标源码】【spark github 源码下载】hadoop mapreduce源码
1.å¦ä½ä½¿ç¨Python为Hadoopç¼åä¸ä¸ªç®åçMapReduceç¨åº
2.mapreduceåhadoopçå
³ç³»
3.hadoop的核心配置文件有哪些
4.Idea 开发Mapreduce遇到的问题,代码不能自动实现方法!搞了很久没搞出来,哪位大牛知道这个?
5.å¦ä½å¨Hadoopä¸ç¼åMapReduceç¨åº
6.Hadoop开源实现
å¦ä½ä½¿ç¨Python为Hadoopç¼åä¸ä¸ªç®åçMapReduceç¨åº
æ们å°ç¼åä¸ä¸ªç®åç MapReduce ç¨åºï¼ä½¿ç¨çæ¯C-Pythonï¼èä¸æ¯Jythonç¼ååæå æjarå çç¨åºã
ããæ们çè¿ä¸ªä¾åå°æ¨¡ä»¿ WordCount 并使ç¨Pythonæ¥å®ç°ï¼ä¾åéè¿è¯»åææ¬æ件æ¥ç»è®¡åºåè¯çåºç°æ¬¡æ°ãç»æä¹ä»¥ææ¬å½¢å¼è¾åºï¼æ¯ä¸è¡å å«ä¸ä¸ªåè¯ååè¯åºç°ç次æ°ï¼ä¸¤è ä¸é´ä½¿ç¨å¶è¡¨ç¬¦æ¥æ³é´éã
ããå å³æ¡ä»¶
ããç¼åè¿ä¸ªç¨åºä¹åï¼ä½ å¦è¦æ¶è®¾å¥½Hadoop é群ï¼è¿æ ·æè½ä¸ä¼å¨åæå·¥ä½æçãå¦æä½ æ²¡ææ¶è®¾å¥½ï¼é£ä¹å¨åé¢æ个ç®ææç¨æ¥æä½ å¨Ubuntu Linux ä¸æ建ï¼åæ ·éç¨äºå ¶ä»åè¡çlinuxãunixï¼
ããå¦ä½ä½¿ç¨Hadoop Distributed File System (HDFS)å¨Ubuntu Linux 建ç«åèç¹ç Hadoop é群
ããå¦ä½ä½¿ç¨Hadoop Distributed File System (HDFS)å¨Ubuntu Linux 建ç«å¤èç¹ç Hadoop é群
ããPythonçMapReduce代ç
ãã使ç¨Pythonç¼åMapReduce代ç çæ巧就å¨äºæ们使ç¨äº HadoopStreaming æ¥å¸®å©æ们å¨Map å Reduceé´ä¼ éæ°æ®éè¿STDIN (æ åè¾å ¥)åSTDOUT (æ åè¾åº).æä»¬ä» ä» ä½¿ç¨Pythonçsys.stdinæ¥è¾å ¥æ°æ®ï¼ä½¿ç¨sys.stdoutè¾åºæ°æ®ï¼è¿æ ·åæ¯å 为HadoopStreamingä¼å¸®æ们åå¥½å ¶ä»äºãè¿æ¯ççï¼å«ä¸ç¸ä¿¡ï¼
ããMap: mapper.py
ããå°ä¸åç代ç ä¿åå¨/home/hadoop/mapper.pyä¸ï¼ä»å°ä»STDIN读åæ°æ®å¹¶å°åè¯æè¡åéå¼ï¼çæä¸ä¸ªå表æ å°åè¯ä¸åç次æ°çå ³ç³»ï¼
ãã注æï¼è¦ç¡®ä¿è¿ä¸ªèæ¬æ足å¤æéï¼chmod +x /home/hadoop/mapper.pyï¼ã
ãã#!/usr/bin/env python
ãã
ããimport sys
ãã
ãã# input comes from STDIN (standard input)
ããfor line in sys.stdin:
ãã# remove leading and trailing whitespace
ããline = line.strip()
ãã# split the line into words
ããwords = line.split()
ãã# increase counters
ããfor word in words:
ãã# write the results to STDOUT (standard output);
ãã# what we output here will be the input for the
ãã# Reduce step, i.e. the input for reducer.py
ãã#
ãã# tab-delimited; the trivial word count is 1
ããprint '%s\\t%s' % (word, 1)å¨è¿ä¸ªèæ¬ä¸ï¼å¹¶ä¸è®¡ç®åºåè¯åºç°çæ»æ°ï¼å®å°è¾åº "<word> 1" è¿ éå°ï¼å°½ç®¡<word>å¯è½ä¼å¨è¾å ¥ä¸åºç°å¤æ¬¡ï¼è®¡ç®æ¯çç»åæ¥çReduceæ¥éª¤ï¼æå«åç¨åºï¼æ¥å®ç°ãå½ç¶ä½ å¯ä»¥æ¹åä¸ç¼ç é£æ ¼ï¼å®å ¨å°éä½ çä¹ æ¯ã
ããReduce: reducer.py
ããå°ä»£ç åå¨å¨/home/hadoop/reducer.py ä¸ï¼è¿ä¸ªèæ¬çä½ç¨æ¯ä»mapper.py çSTDINä¸è¯»åç»æï¼ç¶å计ç®æ¯ä¸ªåè¯åºç°æ¬¡æ°çæ»åï¼å¹¶è¾åºç»æå°STDOUTã
ããåæ ·ï¼è¦æ³¨æèæ¬æéï¼chmod +x /home/hadoop/reducer.py
ãã#!/usr/bin/env python
ãã
ããfrom operator import itemgetter
ããimport sys
ãã
ãã# maps words to their counts
ããword2count = { }
ãã
ãã# input comes from STDIN
ããfor line in sys.stdin:
ãã# remove leading and trailing whitespace
ããline = line.strip()
ãã
ãã# parse the input we got from mapper.py
ããword, count = line.split('\\t', 1)
ãã# convert count (currently a string) to int
ããtry:
ããcount = int(count)
ããword2count[word] = word2count.get(word, 0) + count
ããexcept ValueError:
ãã# count was not a number, so silently
ãã# ignore/discard this line
ããpass
ãã
ãã# sort the words lexigraphically;
ãã#
ãã# this step is NOT required, we just do it so that our
ãã# final output will look more like the official Hadoop
ãã# word count examples
ããsorted_word2count = sorted(word2count.items(), key=itemgetter(0))
ãã
ãã# write the results to STDOUT (standard output)
ããfor word, count in sorted_word2count:
ããprint '%s\\t%s'% (word, count)
ããæµè¯ä½ ç代ç ï¼cat data | map | sort | reduceï¼
ããæå»ºè®®ä½ å¨è¿è¡MapReduce jobæµè¯åå°è¯æå·¥æµè¯ä½ çmapper.py å reducer.pyèæ¬ï¼ä»¥å å¾ä¸å°ä»»ä½è¿åç»æ
ããè¿éæä¸äºå»ºè®®ï¼å ³äºå¦ä½æµè¯ä½ çMapåReduceçåè½ï¼
ããââââââââââââââââââââââââââââââââââââââââââââââ
ãã\r\n
ãã# very basic test
ããhadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py
ããfoo 1
ããfoo 1
ããquux 1
ããlabs 1
ããfoo 1
ããbar 1
ããââââââââââââââââââââââââââââââââââââââââââââââ
ããhadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py | sort | /home/hadoop/reducer.py
ããbar 1
ããfoo 3
ããlabs 1
ããââââââââââââââââââââââââââââââââââââââââââââââ
ãã# using one of the ebooks as example input
ãã# (see below on where to get the ebooks)
ããhadoop@ubuntu:~$ cat /tmp/gutenberg/-8.txt | /home/hadoop/mapper.py
ããThe 1
ããProject 1
ããGutenberg 1
ããEBook 1
ããof 1
ãã[...]
ãã(you get the idea)
ããquux 2
ããquux 1
ããââââââââââââââââââââââââââââââââââââââââââââââ
ããå¨Hadoopå¹³å°ä¸è¿è¡Pythonèæ¬
ãã为äºè¿ä¸ªä¾åï¼æ们å°éè¦ä¸ç§çµå书ï¼
ããThe Outline of Science, Vol. 1 (of 4) by J. Arthur Thomson\r\n
ããThe Notebooks of Leonardo Da Vinci\r\n
ããUlysses by James Joyce
ããä¸è½½ä»ä»¬ï¼å¹¶ä½¿ç¨us-asciiç¼ç åå¨ è§£ååçæ件ï¼ä¿åå¨ä¸´æ¶ç®å½ï¼æ¯å¦/tmp/gutenberg.
ããhadoop@ubuntu:~$ ls -l /tmp/gutenberg/
ããtotal
ãã-rw-r--r-- 1 hadoop hadoop -- : -8.txt
ãã-rw-r--r-- 1 hadoop hadoop -- : 7ldvc.txt
ãã-rw-r--r-- 1 hadoop hadoop -- : ulyss.txt
ããhadoop@ubuntu:~$
ããå¤å¶æ¬å°æ°æ®å°HDFS
ããå¨æ们è¿è¡MapReduce job åï¼æ们éè¦å°æ¬å°çæ件å¤å¶å°HDFSä¸ï¼
ããhadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -copyFromLocal /tmp/gutenberg gutenberg
ããhadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls
ããFound 1 items
ãã/user/hadoop/gutenberg <dir>
ããhadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg
ããFound 3 items
ãã/user/hadoop/gutenberg/-8.txt <r 1>
ãã/user/hadoop/gutenberg/7ldvc.txt <r 1>
ãã/user/hadoop/gutenberg/ulyss.txt <r 1>
ããæ§è¡ MapReduce job
ããç°å¨ï¼ä¸ååå¤å°±ç»ªï¼æ们å°å¨è¿è¡Python MapReduce job å¨Hadoopé群ä¸ãåæä¸é¢æ说çï¼æ们使ç¨çæ¯
ããHadoopStreaming 帮å©æä»¬ä¼ éæ°æ®å¨MapåReduceé´å¹¶éè¿STDINåSTDOUTï¼è¿è¡æ ååè¾å ¥è¾åºã
ããhadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0..1-streaming.jar
ãã-mapper /home/hadoop/mapper.py -reducer /home/hadoop/reducer.py -input gutenberg/
*ãã-output gutenberg-output
ããå¨è¿è¡ä¸ï¼å¦æä½ æ³æ´æ¹Hadoopçä¸äºè®¾ç½®ï¼å¦å¢å Reduceä»»å¡çæ°éï¼ä½ å¯ä»¥ä½¿ç¨â-jobconfâé项ï¼
ããhadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0..1-streaming.jar
ãã-jobconf mapred.reduce.tasks= -mapper ...
ããä¸ä¸ªéè¦çå¤å¿æ¯å ³äºHadoop does not honor mapred.map.tasks
ããè¿ä¸ªä»»å¡å°ä¼è¯»åHDFSç®å½ä¸çgutenberg并å¤çä»ä»¬ï¼å°ç»æåå¨å¨ç¬ç«çç»ææ件ä¸ï¼å¹¶åå¨å¨HDFSç®å½ä¸ç
ããgutenberg-outputç®å½ã
ããä¹åæ§è¡çç»æå¦ä¸ï¼
ããhadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0..1-streaming.jar
ãã-mapper /home/hadoop/mapper.py -reducer /home/hadoop/reducer.py -input gutenberg/
*ãã-output gutenberg-output
ãã
ããadditionalConfSpec_:null
ããnull=@@@userJobConfProps_.get(stream.shipped.hadoopstreaming
ããpackageJobJar: [/usr/local/hadoop-datastore/hadoop-hadoop/hadoop-unjar/]
ãã[] /tmp/streamjob.jar tmpDir=null
ãã[...] INFO mapred.FileInputFormat: Total input paths to process : 7
ãã[...] INFO streaming.StreamJob: getLocalDirs(): [/usr/local/hadoop-datastore/hadoop-hadoop/mapred/local]
ãã[...] INFO streaming.StreamJob: Running job: job__
ãã[...]
ãã[...] INFO streaming.StreamJob: map 0% reduce 0%
ãã[...] INFO streaming.StreamJob: map % reduce 0%
ãã[...] INFO streaming.StreamJob: map % reduce 0%
ãã[...] INFO streaming.StreamJob: map % reduce 0%
ãã[...] INFO streaming.StreamJob: map % reduce %
ãã[...] INFO streaming.StreamJob: map % reduce %
ãã[...] INFO streaming.StreamJob: map % reduce %
ãã[...] INFO streaming.StreamJob: map % reduce %
ãã[...] INFO streaming.StreamJob: Job complete: job__
ãã[...] INFO streaming.StreamJob: Output: gutenberg-output hadoop@ubuntu:/usr/local/hadoop$
ããæ£å¦ä½ æè§å°çä¸é¢çè¾åºç»æï¼Hadoop åæ¶è¿æä¾äºä¸ä¸ªåºæ¬çWEBæ¥å£æ¾ç¤ºç»è®¡ç»æåä¿¡æ¯ã
mapreduceåhadoopçå ³ç³»
hadoopæ¯ä¾æ®mapreduceçåçï¼ç¨Javaè¯è¨å®ç°çåå¸å¼å¤çæºå¶ãHadoopæ¯ä¸ä¸ªè½å¤å¯¹å¤§éæ°æ®è¿è¡åå¸å¼å¤çç软件æ¡æ¶ï¼å®ç°äºGoogleçMapReduceç¼ç¨æ¨¡ååæ¡æ¶ï¼è½å¤æåºç¨ç¨åºåå²æ许å¤çå°çå·¥ä½åå ï¼å¹¶æè¿äºåå æ¾å°ä»»ä½é群èç¹ä¸æ§è¡ã
MapReduceæ¯Hadoopçæç³»ç»ä¸çåå¸å¼è®¡ç®æ¡æ¶ï¼ç¨äºå¤ç大è§æ¨¡æ°æ®éãMapReduceå°æ°æ®åæå¤ä¸ªå°åï¼å°è®¡ç®ä»»å¡åé å°å¤ä¸ªèç¹ä¸å¹¶è¡å¤çï¼æåå°ç»ææ±æ»è¾åºãMapReduceæ¡æ¶å¯ä»¥èªå¨ç®¡çä»»å¡çè°åº¦ã容éãè´è½½åè¡¡çé®é¢ï¼ä½¿å¾Hadoopå¯ä»¥é«æå°è¿è¡å¤§è§æ¨¡æ°æ®å¤çä»»å¡ã
MapReduceåå¸å¼è®¡ç®æ¡æ¶ååï¼
MapReduceåå¸å¼è®¡ç®æ¨¡åæ¯ç±Googleæåºï¼ä¸»è¦ç¨äºæç´¢é¢åï¼è§£å³æµ·éæ°æ®ç计ç®é®é¢Apacheå¯¹å ¶åäºå¼æºå®ç°ï¼æ´åå¨hadoopä¸å®ç°éç¨åå¸å¼æ°æ®è®¡ç®ã
MRç±ä¸¤ä¸ªé¶æ®µç»æï¼MapåReduceï¼ç¨æ·åªéè¦å®ç°mapï¼ï¼åreduceï¼ï¼ä¸¤ä¸ªå½æ°ï¼å³å¯å®ç°åå¸å¼è®¡ç®ï¼é常ç®åã大大ç®åäºåå¸å¼å¹¶åå¤çç¨åºçå¼åãMapé¶æ®µå°±æ¯è¿è¡å段å¤çãReduceé¶æ®µå°±æ¯è¿è¡æ±æ»å¤çãæ±æ»ä¹åè¿å¯ä»¥è¿è¡æ°æ®çä¸ç³»åç¾åæä½ï¼ç¶ååè¾åºã
hadoop的核心配置文件有哪些
在Hadoop 1.x版本中,核心组件包括HDFS和MapReduce。而在Hadoop 2.x及之后的menuetos 内核源码解释版本中,核心组件更新为HDFS、Yarn,并且引入了High Availability(高可用性)的概念,允许存在多个NameNode,每个NameNode都具备相同的职能。
以下是关键的Hadoop配置文件及其作用概述:
1. `hadoop-env.sh`:
- 主要设置JDK的安装路径,例如:`export JAVA_HOME=/usr/local/jdk`
2. `core-site.xml`:
- `fs.defaultFS`:指定HDFS的默认名称节点地址,例如:`hdfs://cluster1`
- `hadoop.tmp.dir`:默认的临时文件存储路径,例如:`/export/data/hadoop_tmp`
- `ha.zookeeper.quorum`:ZooKeeper集群的地址和端口,例如:`hadoop:,hadoop:,hadoop:`
- `hadoop.proxyuser.erpmerge.hosts` 和 `hadoop.proxyuser.erpmerge.groups`:用于设置特定用户(如oozie)的代理权限
请注意,配置文件中的持仓线指标源码路径和地址需要根据实际环境进行相应的修改。
Idea 开发Mapreduce遇到的问题,代码不能自动实现方法!搞了很久没搞出来,哪位大牛知道这个?
项目配置 File ---- Project Structure
1. SDK的配置
2. 加入Hadoop的jar包依赖
3.打包配置
4.开发map-reduce代码
<span style="font-size:px;">import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class Dedup {
//map将输入中的value复制到输出数据的key上,并直接输出
public static class Map extends Mapper<Object,Text,Text,Text>{
private static Text line=new Text();//每行数据
//实现map函数
public void map(Object key,Text value,Context context)
throws IOException,InterruptedException{
line=value;
context.write(line, new Text(""));
}
}
//reduce将输入中的key复制到输出数据的key上,并直接输出
public static class Reduce extends Reducer<Text,Text,Text,Text>{
//实现reduce函数
public void reduce(Text key,Iterable<Text> values,Context context)
throws IOException,InterruptedException{
context.write(key, new Text(""));
}
}
public static void main(String[] args) throws Exception{
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
Job job = new Job(conf, "Data Deduplication");
job.setJarByClass(Dedup.class);
//设置Map、Combine和Reduce处理类
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);
//设置输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//设置输入和输出目录
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputForwww.cdxcxgs.com#tOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}</span>
5.配置编译器
å¦ä½å¨Hadoopä¸ç¼åMapReduceç¨åº
ãã1. æ¦è¿°
ããå¹´ï¼IBMçç 究åE.F.Coddå士å¨åç©ãCommunication of the ACMãä¸å表äºä¸ç¯å为âA Relational Model of Data for Large Shared Data Banksâç论æï¼æåºäºå ³ç³»æ¨¡åçæ¦å¿µï¼æ å¿çå ³ç³»æ°æ®åºçè¯çï¼éåå åå¹´ï¼å ³ç³»æ°æ®åºåå ¶ç»æåæ¥è¯¢è¯è¨SQLæ为ç¨åºåå¿ é¡»ææ¡çåºæ¬æè½ä¹ä¸ã
ããå¹´4æï¼Jeffrey DeanåSanjay Ghemawatå¨å½é ä¼è®®OSDIä¸å表âMapReduce: Simplified Data Processing on Large Clusterâï¼æ å¿çgoogleç大è§æ¨¡æ°æ®å¤çç³»ç»MapReduceå ¬å¼ãåè¿ç¯è®ºæçå¯åï¼å½å¹´ç§å¤©ï¼Hadoop ç± Apache Software Foundation å ¬å¸ä½ä¸º Lucene çåé¡¹ç® Nutch çä¸é¨åæ£å¼è¢«å¼å ¥ï¼ å¹´ 3 æ份ï¼MapReduce å Nutch Distributed File System (NDFS) åå«è¢«çº³å ¥ç§°ä¸º Hadoop ç项ç®ä¸ãå¦ä»ï¼Hadoopå·²ç»è¢«è¶ è¿%çäºèç½å ¬å¸ä½¿ç¨ï¼å ¶ä»å¾å¤å ¬å¸æ£åå¤ä½¿ç¨Hadoopæ¥å¤çæµ·éæ°æ®ï¼éçHadoopè¶æ¥è¶å欢è¿ï¼ä¹è®¸å¨å°æ¥çæ段æ¶é´ï¼Hadoopä¼æ为ç¨åºåå¿ é¡»ææ¡çæè½ä¹ä¸ï¼å¦æçæ¯è¿æ ·çè¯ï¼å¦ä¼å¦ä½å¨Hadoopä¸ç¼åMapReduceç¨åºä¾¿æ¯å¦ä¹ Hadoopçå¼å§ã
ããæ¬æä»ç»äºå¨Hadoopä¸ç¼åMapReduceç¨åºçåºæ¬æ¹æ³ï¼å æ¬MapReduceç¨åºçææï¼ä¸åè¯è¨å¼åMapReduceçæ¹æ³çã
ãã2. Hadoop ä½ä¸ææ
ãã2.1 Hadoopä½ä¸æ§è¡æµç¨
ããç¨æ·é 置并å°ä¸ä¸ªHadoopä½ä¸æå°Hadoopæ¡æ¶ä¸ï¼Hadoopæ¡æ¶ä¼æè¿ä¸ªä½ä¸å解æä¸ç³»åmap tasks åreduce tasksãHadoopæ¡æ¶è´è´£taskåååæ§è¡ï¼ç»ææ¶éåä½ä¸è¿åº¦çæ§ã
ããä¸å¾ç»åºäºä¸ä¸ªä½ä¸ä»å¼å§æ§è¡å°ç»ææç»åçé¶æ®µåæ¯ä¸ªé¶æ®µè¢«è°æ§å¶ï¼ç¨æ· or Hadoopæ¡æ¶ï¼ã
ããä¸å¾è¯¦ç»ç»åºäºç¨æ·ç¼åMapRedueä½ä¸æ¶éè¦è¿è¡é£äºå·¥ä½ä»¥åHadoopæ¡æ¶èªå¨å®æçå·¥ä½ï¼
ããå¨ç¼åMapReduceç¨åºæ¶ï¼ç¨æ·åå«éè¿InputFormatåOutputFormatæå®è¾å ¥åè¾åºæ ¼å¼ï¼å¹¶å®ä¹MapperåReduceræå®mapé¶æ®µåreduceé¶æ®µçè¦åçå·¥ä½ãå¨Mapperæè Reducerä¸ï¼ç¨æ·åªéæå®ä¸å¯¹key/valueçå¤çé»è¾ï¼Hadoopæ¡æ¶ä¼èªå¨é¡ºåºè¿ä»£è§£ææækey/valueï¼å¹¶å°æ¯å¯¹key/value交ç»Mapperæè Reducerå¤çã表é¢ä¸çæ¥ï¼Hadoopéå®æ°æ®æ ¼å¼å¿ 须为key/valueå½¢å¼ï¼è¿äºç®åï¼å¾é¾è§£å³å¤æé®é¢ï¼å®é ä¸ï¼å¯ä»¥éè¿ç»åçæ¹æ³ä½¿keyæè valueï¼æ¯å¦å¨keyæè valueä¸ä¿åå¤ä¸ªå段ï¼æ¯ä¸ªå段ç¨åé符åå¼ï¼æè valueæ¯ä¸ªåºåååç对象ï¼å¨Mapperä¸ä½¿ç¨æ¶ï¼å°å ¶ååºååçï¼ä¿åå¤éä¿¡æ¯ï¼ä»¥è§£å³è¾å ¥æ ¼å¼è¾å¤æçåºç¨ã
ãã2.2 ç¨æ·çå·¥ä½
ããç¨æ·ç¼åMapReduceéè¦å®ç°çç±»æè æ¹æ³æï¼
ããï¼1ï¼ InputFormatæ¥å£
ããç¨æ·éè¦å®ç°è¯¥æ¥å£ä»¥æå®è¾å ¥æ件çå å®¹æ ¼å¼ã该æ¥å£æ两个æ¹æ³
ãã1
ãã2
ãã3
ãã4
ãã5
ãã6
ãã7
ãã8
ãã9
ãã
ãã
ãã
ããpublic interface InputFormat<K, V> {
ãã
ããInputSplit[] getSplits(JobConf job, int numSplits) throws IOException;
ãã
ããRecordReader<K, V> getRecordReader(InputSplit split,
ãã
ããJobConf job,
ãã
ããReporter reporter) throws IOException;
ãã
ãã}
ãã
ããå ¶ä¸getSplitså½æ°å°ææè¾å ¥æ°æ®åænumSplits个splitï¼æ¯ä¸ªsplit交ç»ä¸ä¸ªmap taskå¤çãgetRecordReaderå½æ°æä¾ä¸ä¸ªç¨æ·è§£æsplitçè¿ä»£å¨å¯¹è±¡ï¼å®å°splitä¸çæ¯ä¸ªrecord解æækey/value对ã
ããHadoopæ¬èº«æä¾äºä¸äºInputFormatï¼
ããï¼2ï¼Mapperæ¥å£
ããç¨æ·é继æ¿Mapperæ¥å£å®ç°èªå·±çMapperï¼Mapperä¸å¿ é¡»å®ç°çå½æ°æ¯
ãã1
ãã2
ãã3
ãã4
ãã5
ãã6
ãã7
ãã8
ãã9
ãã
ããvoid map(K1 key,
ãã
ããV1 value,
ãã
ããOutputCollector<K2,V2> output,
ãã
ããReporter reporter
ãã
ãã) throws IOException
ãã
ããå ¶ä¸ï¼<K1 V1>æ¯éè¿Inputformatä¸çRecordReader对象解æå¤ç çï¼OutputCollectorè·åmap()çè¾åºç»æï¼Reporterä¿åäºå½åtaskå¤çè¿åº¦ã
ããHadoopæ¬èº«æä¾äºä¸äºMapperä¾ç¨æ·ä½¿ç¨ï¼
ããï¼3ï¼Partitioneræ¥å£
ããç¨æ·é继æ¿è¯¥æ¥å£å®ç°èªå·±çPartitioner以æå®map task产ççkey/value对交ç»åªä¸ªreduce taskå¤çï¼å¥½çPartitionerè½è®©æ¯ä¸ªreduce taskå¤ççæ°æ®ç¸è¿ï¼ä»èè¾¾å°è´è½½åè¡¡ãPartitionerä¸éå®ç°çå½æ°æ¯
ããgetPartition( K2 key, V2 value, int numPartitions)
ãã该å½æ°è¿å<K2 V2>对åºçreduce task IDã
ããç¨æ·å¦æä¸æä¾Partitionerï¼Hadoopä¼ä½¿ç¨é»è®¤çï¼å®é ä¸æ¯ä¸ªhashå½æ°ï¼ã
ããï¼4ï¼Combiner
ããCombiner使å¾map taskä¸reduce taskä¹é´çæ°æ®ä¼ è¾é大大åå°ï¼å¯ææ¾æé«æ§è½ã大å¤æ°æ åµä¸ï¼Combinerä¸Reducerç¸åã
ããï¼5ï¼Reduceræ¥å£
ããç¨æ·é继æ¿Reduceræ¥å£å®ç°èªå·±çReducerï¼Reducerä¸å¿ é¡»å®ç°çå½æ°æ¯
ãã1
ãã2
ãã3
ãã4
ãã5
ãã6
ãã7
ãã8
ãã9
ãã
ããvoid reduce(K2 key,
ãã
ããIterator<V2> values,
ãã
ããOutputCollector<K3,V3> output,
ãã
ããReporter reporter
ãã
ãã) throws IOException
ãã
ããHadoopæ¬èº«æä¾äºä¸äºReducerä¾ç¨æ·ä½¿ç¨ï¼
ããï¼6ï¼OutputFormat
ããç¨æ·éè¿OutputFormatæå®è¾åºæ件çå å®¹æ ¼å¼ï¼ä¸è¿å®æ²¡æsplitãæ¯ä¸ªreduce taskå°å ¶æ°æ®åå ¥èªå·±çæ件ï¼æ件å为part-nnnnnï¼å ¶ä¸nnnnn为reduce taskçIDã
ããHadoopæ¬èº«æä¾äºå 个OutputFormat:
ãã3. åå¸å¼ç¼å
ããHaoopä¸èªå¸¦äºä¸ä¸ªåå¸å¼ç¼åï¼å³DistributedCache对象ï¼æ¹ä¾¿map taskä¹é´æè reduce taskä¹é´å ±äº«ä¸äºä¿¡æ¯ï¼æ¯å¦æäºå®é åºç¨ä¸ï¼ææmap taskè¦è¯»ååä¸ä¸ªé ç½®æ件æè åå ¸ï¼åå¯å°è¯¥é ç½®æ件æè åå ¸æ¾å°åå¸å¼ç¼åä¸ã
ãã4. å¤è¯è¨ç¼åMapReduceä½ä¸
ããHadoopéç¨javaç¼åï¼å èHadoop天çæ¯æjavaè¯è¨ç¼åä½ä¸ï¼ä½å¨å®é åºç¨ä¸ï¼ææ¶åï¼å è¦ç¨å°éjavaç第ä¸æ¹åºæè å ¶ä»åå ï¼è¦éç¨C/C++æè å ¶ä»è¯è¨ç¼åMapReduceä½ä¸ï¼è¿æ¶åå¯è½è¦ç¨å°Hadoopæä¾çä¸äºå·¥å ·ã
ããå¦æä½ è¦ç¨C/C++ç¼åMpaReduceä½ä¸ï¼å¯ä½¿ç¨çå·¥å ·æHadoop Streamingæè Hadoop Pipesã
ããå¦æä½ è¦ç¨Pythonç¼åMapReduceä½ä¸ï¼å¯ä»¥ä½¿ç¨Hadoop Streamingæè Pydoopã
ããå¦æä½ è¦ä½¿ç¨å ¶ä»è¯è¨ï¼å¦shellï¼phpï¼rubyçï¼å¯ä½¿ç¨Hadoop Streamingã
ããå ³äºHadoop Streamingç¼ç¨ï¼å¯åè§æçè¿ç¯åæï¼ãHadoop Streamingç¼ç¨ãï¼/projects/pydoop/
ããå ³äºHadoop pipesç¼ç¨ï¼å¯åè§ãHadoop Tutorial 2.2 â Running C++ Programs on Hadoopãã
ãã5. ç¼ç¨æ¹å¼æ¯è¾
ããï¼1ï¼javaã Hadoopæ¯æçæ好æå ¨é¢çè¯è¨ï¼èä¸æä¾äºå¾å¤å·¥å ·æ¹ä¾¿ç¨åºåå¼åã
ããï¼2ï¼Hadoop Streamingã å®æ大çä¼ç¹æ¯æ¯æå¤ç§è¯è¨ï¼ä½æçè¾ä½ï¼reduce taskéçå°map é¶æ®µå®æåæè½å¯å¨ï¼å®ä¸æ¯æç¨æ·èªå®ä¹InputFormatï¼å¦æç¨æ·æ³æå®è¾å ¥æä»¶æ ¼å¼ï¼å¯ä½¿ç¨javaè¯è¨ç¼åæè å¨å½ä»¤è¡ä¸æå®åé符ï¼å®éç¨æ åè¾å ¥è¾åºè®©C/C++ä¸javaéä¿¡ï¼å èåªæ¯ætextæ°æ®æ ¼å¼ã
ããï¼3ï¼Hadoop Pipesã ä¸é¨ä¸ºC/C++è¯è¨è®¾è®¡ï¼ç±äºå ¶éç¨äºsocketæ¹å¼è®©C/C++ä¸javaéä¿¡ï¼å èå ¶æçè¾ä½ï¼å ¶ä¼å¿å¨äºï¼ä½ä½ä¸éè¦å¤§éï¼é度å¾å¿«ï¼ãå®æ¯æç¨æ·ï¼ç¨C/C++ï¼ç¼åRecordReaderã
ããï¼4ï¼Pydoopãå®æ¯ä¸é¨æ¹ä¾¿pythonç¨åºåç¼åMapReduceä½ä¸è®¾è®¡çï¼å ¶åºå±ä½¿ç¨äºHadoop Streamingæ¥å£ålibhdfsåºã
ãã6. æ»ç»
ããHadoop使å¾åå¸å¼ç¨åºçç¼ååå¾å¼å¸¸ç®åï¼å¾å¤æ åµä¸ï¼ç¨æ·åªéåmap()åreduce()两个å½æ°å³å¯ï¼InputFormatï¼Outputformatå¯ç¨ç³»ç»ç¼ºççï¼ãæ£æ¯ç±äºHadoopç¼ç¨çç®åæ§ï¼è¶æ¥è¶å¤çå ¬å¸æè ç 究åä½å¼å§ä½¿ç¨Hadoopã
Hadoop开源实现
Hadoop是一个开源的项目,主要由HDFS和MapReduce两个核心组件构成。spark github 源码下载HDFS是Google File System(GFS)的开源版本,提供了一个分布式文件系统,用于高效存储和管理海量数据。NameNode和DataNode是HDFS的关键角色,NameNode作为唯一的服务节点,负责管理文件系统元数据,而DataNode则是数据存储节点,用户通过NameNode与之交互,c 主界面源码实现透明的数据存取,其操作与普通文件系统API并无二致。 MapReduce则是Google MapReduce的开源实现,主要由JobTracker节点负责任务分配和用户程序的通信。用户通过继承MapReduceBase,实现Map和Reduce功能,注册Job后,Hadoop将自动进行分布式执行。游戏demo源码下载HDFS和MapReduce是独立工作的,用户可以在没有HDFS的情况下使用MapReduce进行运算。 Hadoop与云计算项目的目标相似,即处理大规模数据的计算。为了支持这种计算,它引入了Hadoop分布式文件系统(HDFS),作为一个稳定且安全的数据容器。HDFS的通信部分主要依赖org.apache.hadoop.ipc提供的RPC服务,用户需要自定义实现数据读写和NameNode/DataNode之间的通信。 MapReduce的核心实现位于org.apache.hadoop.mapred包中,用户需要实现接口类并管理节点通信,即可进行MapReduce计算。Hadoop的发音为[hædu:p]。 最新发布的版本是2.0.2,Hadoop为开发者提供了强大而灵活的工具,支持Fedora、Ubuntu等Linux平台,广泛应用于数据分析领域,由Hortonworks公司负责后续开发工作,确保了项目的持续发展和创新。扩展资料
一个分布式系统基础架构,由Apache基金会开发。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力高速运算和存储。Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有着高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以流的形式访问(streaming access)文件系统中的数据。