1.Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理
2.解析LinuxSS源码探索一探究竟linuxss源码
3.Linux内核源码分析:Linux进程描述符task_ struct结构体详解
4.Linux内核源码分析:Linux内核版本号和源码目录结构
5.2024年度Linux6.9内核最新源码解读-网络篇-server端-第一步创建--socket
6.如何有效的分析阅读linux内核源码?
Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理
引子
在如今的大型服务器中,NUMA架构扮演着关键角色。模码深码它允许系统拥有多个物理CPU,块源不同NUMA节点之间通过QPI通信。入分虽然硬件连接细节在此不作深入讨论,源代但需明白每个CPU优先访问本节点内存,分析溯源码英文简称当本地内存不足时,模码深码可向其他节点申请。块源从传统的入分SMP架构转向NUMA架构,主要是源代为了解决随着CPU数量增多而带来的总线压力问题。
分配物理内存时,分析numa_node_id() 方法用于查询当前CPU所在的模码深码NUMA节点。频繁的块源内存申请操作促使Linux内核采用per-cpu实现,将CPU访问的入分变量复制到每个CPU中,以减少缓存行竞争和False Sharing,源代类似于Java中的Thread Local。
分配物理页
尽管我们不必关注底层实现,buddy system负责分配物理页,关键在于使用了numa_node_id方法。接下来,我们将深入探索整个Linux内核的per-cpu体系。
numa_node_id源码分析获取数据
在topology.h中,我们发现使用了raw_cpu_read函数,传入了numa_node参数。接下来,我们来了解numa_node的定义。
在topology.h中定义了numa_node。我们继续跟踪DECLARE_PER_CPU_SECTION的定义,最终揭示numa_node是一个共享全局变量,类型为int,存储在.data..percpu段中。
在percpu-defs.h中,numa_node被放置在ELF文件的.data..percpu段中,这些段在运行阶段即为段。接下来,我们返回raw_cpu_read方法。
在percpu-defs.h中,我们继续跟进__pcpu_size_call_return方法,此方法根据per-cpu变量的大小生成回调函数。对于numa_node的int类型,最终拼接得到的是raw_cpu_read_4方法。
在percpu.h中,调用了一般的read方法。在percpu.h中,获取numa_node的绝对地址,并通过raw_cpu_ptr方法。
在percpu-defs.h中,redis框架源码我们略过验证指针的环节,追踪arch_raw_cpu_ptr方法。接下来,我们来看x架构的实现。
在percpu.h中,使用汇编获取this_cpu_off的地址,代表此CPU内存副本到".data..percpu"的偏移量。加上numa_node相对于原始内存副本的偏移量,最终通过解引用获得真正内存地址内的值。
对于其他架构,实现方式相似,通过获取自己CPU的偏移量,最终通过相对偏移得到pcp变量的地址。
放入数据
讨论Linux内核启动过程时,我们不得不关注per-cpu的值是如何被放入的。
在main.c中,我们以x实现为例进行分析。通过setup_percpu.c文件中的代码,我们将node值赋给每个CPU的numa_node地址处。具体计算方法通过early_cpu_to_node实现,此处不作展开。
在percpu-defs.h中,我们来看看如何获取每个CPU的numa_node地址,最终还是通过简单的偏移获取。需要注意如何获取每个CPU的副本偏移地址。
在percpu.h中,我们发现一个关键数组__per_cpu_offset,其中保存了每个CPU副本的偏移值,通过CPU的索引来查找。
接下来,我们来设计PER CPU模块。
设计一个全面的PER CPU架构,它支持UMA或NUMA架构。我们设计了一个包含NUMA节点的结构体,内部管理所有CPU。为每个CPU创建副本,其中存储所有per-cpu变量。静态数据在编译时放入原始数据段,动态数据在运行时生成。
最后,我们回到setup_per_cpu_areas方法的分析。在setup_percpu.c中,我们详细探讨了关键方法pcpu_embed_first_chunk。此方法管理group、unit、静态、自动阅卷 源码保留、动态区域。
通过percpu.c中的关键变量__per_cpu_load和vmlinux.lds.S的链接脚本,我们了解了per-cpu加载时的地址符号。PERCPU_INPUT宏定义了静态原始数据的起始和结束符号。
接下来,我们关注如何分配per-cpu元数据信息pcpu_alloc_info。percpu.c中的方法执行后,元数据分配如下图所示。
接着,我们分析pcpu_alloc_alloc_info的方法,完成元数据分配。
在pcpu_setup_first_chunk方法中,我们看到分配的smap和dmap在后期将通过slab再次分配。
在main.c的mm_init中,我们关注重点区域,完成map数组的slab分配。
至此,我们探讨了Linux内核中per-cpu实现的原理,从设计到源码分析,全面展现了这一关键机制在现代服务器架构中的作用。
解析LinuxSS源码探索一探究竟linuxss源码
被誉为“全球最复杂开源项目”的Linux SS(Secure Socket)是一款轻量级的网络代理工具,它在Linux系统上非常受欢迎,也成为了大多数网络应用的首选。Linux SS的源码的代码量相当庞大,也备受广大开发者的关注,潜心钻研Linux SS源码对于网络研究者和黑客们来说是非常有必要的。
我们以Linux 3. 内核的SS源码为例来分析,Linux SS的源码目录位于linux/net/ipv4/netfilter/目录下,在该目录下包含了Linux SS的主要代码,我们可以先查看其中的主要头文件,比如说:
include/linux/netfilter/ipset/ip_set.h
include/linux/netfilter_ipv4/ip_tables.h
include/linux/netfilter/x_tables.h
这三个头文件是Linux SS系统的核心结构之一。
接下来,我们还要解析两个核心函数:iptables_init函数和iptables_register_table函数,这两个函数的主要作用是初始化网络过滤框架和注册网络过滤表。iptables_init函数主要用于初始化网络过滤框架,主要完成如下功能:
1. 调用xtables_init函数,初始化Xtables模型;
2. 调用ip_tables_init函数,初始化IPTables模型;
3. 调用nftables_init函数,初始化Nftables模型;
4. 调用ipset_init函数,初始化IPset模型。
而iptables_register_table函数主要用于注册网络过滤表,主要完成如下功能:
1. 根据提供的参数检查表的有效性;
2. 创建一个新的数据结构xt_table;
3. 将该表注册到ipt_tables数据结构中;
4. 将表名及对应的表结构存放到xt_tableshash数据结构中;
5. 更新表的索引号。
到这里,我们就大致可以了解Linux SS的源码,但Learning Linux SS源码只是积分论坛源码静态分析,细节的分析还需要真正的运行环境,观察每个函数的实际执行,而真正运行起来的Linux SS,是与系统内核非常紧密结合的,比如:
1. 调用内核函数IPv6_build_route_tables_sockopt,构建SS的路由表;
2. 调用内核内存管理系统,比如kmalloc、vmalloc等,分配SS所需的内存;
3. 初始化Linux SS的配置参数;
4. 调用内核模块管理机制,加载Linux SS相关的内核模块;
5. 调用内核功能接口,比如netfilter, nf_conntrack, nf_hook等,通过它们来执行对应的网络功能。
通过上述深入了解Linux SS源码,我们可以迅速把握Linux SS的构架和实现,也能熟悉Linux SS的具体运行流程。Linux SS的深层原理揭示出它未来的发展趋势,我们也可以根据Linux SS的现有架构改善Linux的网络安全机制,进一步开发出与Linux SS和系统内核更加融合的高级网络功能。
Linux内核源码分析:Linux进程描述符task_ struct结构体详解
Linux内核通过一个task_struct结构体来管理进程,这个结构体包含了一个进程所需的所有信息。它定义在include/linux/sched.h文件中,包含许多字段,其中state字段表示进程的当前状态。常见的状态包括运行、阻塞、等待信号、终止等。进程状态的切换和原因可通过内核函数进行操作。PID是系统用来唯一标识正在运行的每个进程的数字标识,tgid成员表示线程组中所有线程共享的PID。进程内核栈用于保存进程在内核态执行时的临时数据和上下文信息,通常为几千字节。内核将thread_info结构与内核态线程堆栈结合在一起,占据连续的两个页框,以便于访问线程描述符和栈。获取当前运行进程的thread_info可通过esp栈指针实现。thread_info结构包含task字段,指向进程控制块(task_struct)。task_struct结构体的flags字段用于记录进程标记或状态信息,如创建、超级用户、核心转储、信号处理、退出等。而real_parent和parent成员表示进程的亲属关系,用于查找和处理进程树中的宜昌源码诈骗亲属关系。
Linux内核源码分析:Linux内核版本号和源码目录结构
深入探索Linux内核世界:版本号与源码结构剖析
Linux内核以其卓越的稳定性和灵活性著称,版本号的精心设计彰显其功能定位。Linux采用xxx.yyy.zzz的格式,其中yy代表驱动和bug修复,zz则是修订次数的递增。主版本号(xx)与次版本号(yy)共同描绘了核心功能的大致轮廓,而修订版(zz)则确保了系统的稳定性与可靠性。
Linux源码的结构犹如一座精密的城堡,由多个功能强大的模块构成。首先,arch目录下包含针对不同体系结构的代码,比如RISC-V和x的虚拟地址翻译,是内核与硬件之间的重要桥梁。接着,block与drivers的区别在于,前者封装了通用的块设备操作,如读写,而后者则根据特定硬件设备分布在各自的子目录中,如GPIO设备在drivers/gpio。
为了保证组件来源的可信度和系统安全,certs目录存放认证和签名相关的代码,预先装载了必要的证书。从Linux 2.2版本开始,内核引入动态加载模块机制,fs和net目录下的代码分别支持虚拟文件系统和网络协议,这大大提升了灵活性,但同时也对组件验证提出了更高要求,以防止恶意代码的入侵。
内核的安全性得到了进一步加强,crypto目录包含了各种加密算法,如AES和DES,它们为硬件驱动提供了性能优化。同时,内核还采用了压缩算法,如LZO和LZ4,以减小映像大小,提升启动速度和内存利用效率。
文档是理解内核运作的关键,《strong>Documentation目录详尽地记录了模块的功能和规范。此外,include存储内核头文件,init负责初始化过程,IPC负责进程间通信,kernel核心代码涵盖了进程和中断管理,lib提供了通用库函数,而mm则专注于内存管理。网络功能则在net目录下,支持IPv4和TCP/IPv6等协议。
内核的实用工具和示例代码在scripts和samples目录下,而security则关注安全机制,sound负责音频驱动,tools则存放开发和调试工具,如perf和kconfig。用户内核源码在usr目录,虚拟化支持在virt,而LICENSE目录保证了源码的开放和透明。
最后,Makefile是编译内核的关键,README文件则包含了版本信息、硬件支持、安装配置指南,以及已知问题、限制和BUG修复等重要细节。这份详尽的指南是新用户快速入门Linux内核的绝佳起点。
通过深入研究这些目录,开发者和爱好者可以更全面地理解Linux内核的运作机制,从而更好地开发、维护和优化这个强大的操作系统。[原文链接已移除,以保护版权]
年度Linux6.9内核最新源码解读-网络篇-server端-第一步创建--socket
深入解析年Linux 6.9内核的网络篇,从服务端的第一步:创建socket开始。理解用户空间与内核空间的交互至关重要。当我们在用户程序中调用socket(AF_INET, SOCK_STREAM, 0),实际上是触发了从用户空间到内核空间的系统调用sys_socket(),这是创建网络连接的关键步骤。 首先,让我们关注sys_socket函数。这个函数在net/socket.c文件的位置,无论内核版本如何,都会调用__sys_socket_create函数来实际创建套接字,它接受地址族、类型、协议和结果指针。创建失败时,会返回错误指针。 在socket创建过程中,参数解析至关重要:网络命名空间(net):隔离网络环境,每个空间有自己的配置,如IP地址和路由。
协议族(family):如IPv4(AF_INET)或IPv6(AF_INET6)。
套接字类型(type):如流式(SOCK_STREAM)或数据报(SOCK_DGRAM)。
协议(protocol):如TCP(IPPROTO_TCP)或UDP(IPPROTO_UDP),默认值自动选择。
结果指针(res):指向新创建的socket结构体。
内核标志(kern):区分用户空间和内核空间的socket。
__sock_create函数处理创建逻辑,调用sock_map_fd映射文件描述符,支持O_CLOEXEC和O_NONBLOCK选项。每个网络协议族有其特有的create函数,如inet_create处理IPv4 TCP创建。 在内核中,安全模块如LSM会通过security_socket_create进行安全检查。sock_alloc负责内存分配和socket结构初始化,协议族注册和动态加载在必要时进行。RCU机制保护数据一致性,确保在多线程环境中操作的正确性。 理解socket_wq结构体对于异步IO至关重要,它协助socket管理等待队列和通知。例如,在TCP协议族的inet_create函数中,会根据用户请求找到匹配的协议,并设置相关的操作集和数据结构。 通过源码,我们可以看到socket和sock结构体的关系,前者是用户空间操作的抽象,后者是内核处理网络连接的实体。理解这些细节有助于我们更好地编写C++网络程序。 此外,原始套接字(如TCP、UDP和CMP)的应用示例,以及对不同协议的深入理解,如常用的IP协议、专用协议和实验性协议,是进一步学习和实践的重要部分。如何有效的阅读linux内核源码?
在面对庞大而复杂的 Linux 内核源码时,许多人会感到困惑,不知道如何开始深入阅读和理解。本文旨在提供一套高效阅读 Linux 内核源码的方法,帮助读者以实际问题为导向,逐步构建对内核的理解。
首先,明确阅读目的。阅读内核源码的目的是为了更好地解决实际工作中的问题,而不是为了追求对内核本身的全面理解。例如,当你在工作中遇到了网络性能问题,可能需要理解网络包从网卡到应用程序的过程,此时阅读相关源码并深入研究网络模块的工作机制,将帮助你找出问题所在。
以实际问题为核心,你应当从实际工作中遇到的问题出发,收集相关资料,包括阅读书籍、搜索网络文章,甚至动手编写测试代码来验证理解的正确性。通过这种方式,你可以将理论知识与实际应用相结合,逐步掌握内核的运作机制。
对于阅读源码的方法,可以将其分为“地毯式轰炸”和“精确制导”两种。不推荐的方式是“地毯式轰炸”,即无目的地阅读所有源码,这种做法耗时长且与实际工作关联度低。推荐的方式是“精确制导”,即针对特定问题进行有目的的阅读,专注于与问题相关的关键代码段,通过逐步深入理解,将点状知识连成面,形成全面而深刻的理解。
在阅读过程中,使用合适的工具可以极大地提高效率。例如,Linux 源码下载、优秀的电子书资源、在线源码搜索引擎、集成开发环境(IDE)如 Visual Studio Code,以及快捷键等功能,都能帮助你更高效地定位、理解和使用源码。通过将实际问题作为学习的中心,结合这些工具,你将能够更有效地阅读和理解 Linux 内核源码。
最后,强调学以致用的重要性。阅读源码的目的在于解决实际问题,而非追求理论知识的全面掌握。通过实际应用和分享知识,你将能够更深刻地理解内核的工作原理,并将其应用到实际工作中。关注实际问题,明确目标,结合实用工具和方法,你将能够在阅读 Linux 内核源码的旅程中取得显著进步。
linux 5. ncsi源码分析
深入剖析Linux 5. NCSI源码:构建笔记本与BMC通信桥梁 NCSI(Network Configuration and Status Interface),在5.版本的Linux内核中,为笔记本与BMC(Baseboard Management Controller)以及服务器操作系统之间的同网段通信提供了强大支持。让我们一起探索关键的NCSI网口初始化流程,以及其中的关键结构体和函数。1. NCSI网口初始化:驱动注册
驱动程序初始化始于ftgmac_probe,这是关键步骤,它会加载并初始化struct ncsi_dev_priv,包含了驱动的核心信息,如NCSI_DEV_PROBED表示最终的拓扑结构,NCSI_DEV_HWA则启用硬件仲裁机制。关键结构体剖析
struct ncsi_dev_priv包含如下重要字段:
request表,记录NCSI命令的执行状态;
active_package,存储活跃的package信息;
NCSI_DEV_PROBED,表示连接状态的最终拓扑;
NCSI_DEV_HWA,启用硬件资源的仲裁功能。
命令与响应的承载者
struct ncsi_request是NCSI命令和结果的核心容器,包含请求ID、待处理请求数、channel队列以及package白名单等。每个请求都包含一个唯一的ID,用于跟踪和管理。数据包管理与通道控制
从struct ncsi_package到struct ncsi_channel,每个通道都有其特定状态和过滤器设置。multi_channel标志允许多通道通信,channel_num则记录总通道数量。例如,struct ncsi_channel_mode用于设置通道的工作模式,如NCSI_MODE_LINK表示连接状态。发送与接收操作
struct ncsi_cmd_arg是发送NCSI命令的关键结构,包括驱动私有信息、命令类型、ID等。在ncsi_request中,每个请求记录了请求ID、使用状态、标志,以及与网络链接相关的详细信息。ncsi_dev_work函数:工作队列注册与状态处理
在行的ncsi_register_dev函数中,初始化ncsi工作队列,根据网卡状态执行通道初始化、暂停或配置。ncsi_rcv_rsp处理NCSI报文,包括网线事件和命令响应,确保通信的稳定和高效。扩展阅读与资源
深入理解NCSI功能和驱动probe过程,可以参考以下文章和资源:Linux内核ncsi驱动源码分析(一)
Linux内核ncsi驱动源码分析(二)
华为Linux下NCSI功能切换指南
NCSI概述与性能笔记
浅谈NCSI在Linux的实现和应用
驱动probe执行过程详解
更多技术讨论:OpenBMC邮件列表和CSDN博客
通过以上分析,NCSI源码揭示了如何构建笔记本与BMC的高效通信网络,为开发者提供了深入理解Linux内核NCSI模块的关键信息。继续探索这些资源,你将能更好地运用NCSI技术来优化你的系统架构。
剖析Linux内核源码解读之《配置与编译》
Linux内核的配置与编译过程详解如下:配置阶段
首先,从kernel.org获取内核源代码,如在Ubuntu中,可通过`sudo apt-get source linux-$(uname -r)`获取到,源码存放在`/usr/src/`。配置时,主要依据`arch//configs/`目录下的默认配置文件,使用`cp`命令覆盖`/boot/config`文件。配置命令有多种,如通过`.config`文件进行手动修改,但推荐在编译前进行系统配置。配置时注意保存配置,例如使用`/proc/config.gz`,以备后续需要。编译阶段
内核编译涉及多种镜像类型,如针对ARM的交叉编译,常用命令是特定的。编译过程中,可能会遇到错误,需要针对具体问题进行解决。编译完成后,将模块和firmware(体系无关)分别存入指定文件夹,记得为某些硬件添加对应的firmware文件到`lib/firmware`目录。其他内容
理解vmlinux、vmlinuz(zImage, bzImage, uImage)之间的关系至关重要。vmlinuz是压缩后的内核镜像,zImage和bzImage是vmlinuz的压缩版本,其中zImage在内存低端解压,而bzImage在高端解压。uImage是uBoot专用的,是在zImage基础上加上特定头信息的版本。2024-11-25 10:57
2024-11-25 10:36
2024-11-25 09:58
2024-11-25 09:05
2024-11-25 08:53
2024-11-25 08:35