【聚富28源码】【fastjson源码有多少行】【新雪人影视源码】stl 源码

时间:2024-11-28 18:22:41 分类:our表白墙源码 来源:定位平台源码

1.【STL源码剖析】总结笔记(2):容器(containers)概览
2.[stl 源码分析] std::sort
3.STL源码学习(3)- vector详解
4.[stl 源码分析] std::list::size 时间复杂度
5.STL 源码剖析:sort
6.STL源码剖析9-set、multiset

stl 源码

【STL源码剖析】总结笔记(2):容器(containers)概览

       容器作为STL的重要组成部分,其使用极大地提升了解决问题的效率。深入研究容器内部结构与实现方式,对提升编程技能至关重要。本文将对容器进行概览,聚富28源码分为序列式容器、关联式容器与无序容器三大类。

       容器大致分为序列式容器、关联式容器和无序容器。其中序列式容器侧重于顺序存储,关联式容器则强调元素间的键值关系,而无序容器可以看作关联式容器的一种。

       容器之间的关系可以归纳为:序列式容器为基层,关联式容器则在基层基础上构建了更复杂的数据结构。例如,heap和priority容器以vector作为底层支持,而set和map则采用红黑树作为基础数据结构。此外,还存在一些非标准容器,如slist和以hash开头的容器。在C++ 中,slist更名为了forward-list,而hash开头的容器改名为了unordered开头。

       在容器的实现中,sizeof()函数可能揭示容器的内部大小对比。需要注意的是,尽管在GNU 4.9版本中,一些容器的设计变得复杂,采用了较多的继承结构,但实际上,fastjson源码有多少行这些设计在功能上并未带来太大差异。

       熟悉容器的结构后,我们可以从vector入手,探索其内部实现细节。其他容器同样蕴含丰富的学习内容,如在list中,迭代器(iterators)的设计体现了编程的精妙之处;而在set和map中,红黑树的实现展现了数据结构的高效管理。

       本文对容器进行了概览,旨在提供一个全面的视角,后续将对vector、list、set、map等容器进行详细分析,揭示其背后的实现机制与设计原理。

[stl 源码分析] std::sort

       std::sort在标准库中是一个经典的复合排序算法,结合了插入排序、快速排序、堆排序的优点。该算法在排序时根据几种算法的优缺点进行整合,形成一种被称为内省排序的高效排序方法。

       内省排序结合了快速排序和堆排序的优点,快速排序在大部分情况下具有较高的效率,堆排序在最坏情况下仍能保持良好的性能。内省排序在排序过程中,先用快速排序进行大体排序,然后递归地对未排序部分进行更细粒度的排序,直至完成整个排序过程。在快速排序效率较低时,内省排序会自动切换至插入排序,新雪人影视源码以提高排序效率。

       在实现上,std::sort使用了内省排序算法,并在适当条件下切换至插入排序以优化性能。其源码包括排序逻辑的实现和测试案例。排序源码主要由内省排序和插入排序两部分组成。

       内省排序在排序过程中先快速排序,然后对未完全排序的元素进行递归快速排序。当子数组的长度小于某个阈值时,内省排序会自动切换至插入排序。插入排序在小规模数据中具有较高的效率,因此在内省排序中作为优化部分,提高了整个排序算法的性能。

       插入排序在排序过程中,将新元素插入已排序部分的正确位置。这种简单而直观的算法在小型数据集或接近排序状态的数据中表现出色。内省排序通过将插入排序应用于小规模数据,进一步优化了排序算法的性能。

       综上所述,std::sort通过结合内省排序和插入排序,实现了高效且稳定的数据排序。内省排序在大部分情况下提供高性能排序,而在数据规模较小或接近排序状态时,插入排序作为优化部分,进一步提高了排序效率。这种复合排序方法使得std::sort成为标准库中一个强大且灵活的排序工具。

STL源码学习(3)- vector详解

       STL源码学习(3)- vector详解

       vector的迭代器与数据类型:vector内部的连续存储结构使得任何类型的数据指针都可以作为其迭代器。通过迭代器,可以执行诸如指针操作,如访问元素值。即时聊天系统源码出售

       vector定义了两个迭代器start和finish,分别指向元素的起始和终止地址,同时还有一个end_of_storage标记空间的结束位置。vector的容量保证大于等于已分配元素空间,提供了获取空间大小的函数,如front和back的值以引用返回,更高效。

       空间配置原理:STL中的vector使用SGI STL容器的二级空间配置器。vector头部包含配置信息,如data_allocator作为空间配置器的别名。简单配置器(simple_alloc)是封装了高级和低级配置器调用的抽象类。

       构造函数与内存管理:vector通过空间配置器创建元素。构造函数允许预分配并初始化元素,fill_initialize用于调整空间范围,allocate_and_fill则分配空间并填充。这个过程涉及data_allocator的allocate函数,分配空间并返回起始地址。

       vector析构时,调用deallocate函数释放空间。pop_back和erase方法会移除元素并销毁相应空间,clear则清除全部元素。insert操作复杂,根据元素数量和容器状态可能需要扩容。

       插入与扩展操作:push_back在末尾插入元素,如果空间不足,可能需要扩容。insert接受三个参数,根据情况处理插入操作,可能抛出异常并销毁部分元素。

[stl 源码分析] std::list::size 时间复杂度

       在对Linux上C++项目进行性能压测时,专业网页制作源码下载一个意外的发现是std::list::size方法的时间复杂度并非预期的高效。原来,这个接口在较低版本的g++(如4.8.2)中是通过循环遍历整个列表来计算大小的,这导致了明显的性能瓶颈。@NagiS的提示揭示了这个问题可能与g++版本有关。

       在功能测试阶段,CPU负载始终居高不下,通过火焰图分析,std::list::size的调用占据了大部分执行时间。火焰图的使用帮助我们深入了解了这一问题。

       查阅相关测试源码(源自cplusplus.com),在较低版本的g++中,std::list通过逐个节点遍历来获取列表长度,这种操作无疑增加了时间复杂度。然而,对于更新的g++版本(如9),如_glibcxx_USE_CXX_ABI宏启用后,list的实现进行了优化。它不再依赖遍历,而是利用成员变量_M_size直接存储列表大小,从而将获取大小的时间复杂度提升到了[公式],显著提高了性能。具体实现细节可在github上找到,如在/usr/include/c++/9/bits/目录下的代码。

STL 源码剖析:sort

       我大抵是太闲了。

       更好的阅读体验。

       sort 作为最常用的 STL 之一,大多数人对于其了解仅限于快速排序。

       听说其内部实现还包括插入排序和堆排序,于是很好奇,决定通过源代码一探究竟。

       个人习惯使用 DEV-C++,不知道其他的编译器会不会有所不同,现阶段也不是很关心。

       这个文章并不是析完之后的总结,而是边剖边写。不免有个人的猜测。而且由于本人英语极其差劲,大抵会犯一些憨憨错误。

       源码部分sort

       首先,在 Dev 中输入以下代码:

       然后按住 ctrl,鼠标左键sort,就可以跳转到头文件 stl_algo.h,并可以看到这个:

       注释、模板和函数参数不再解释,我们需要关注的是函数体。

       但是,中间那一段没看懂……

       点进去,是一堆看不懂的#define。

       查了一下,感觉这东西不是我这个菜鸡能掌握的。

       有兴趣的 戳这里。

       那么接下来,就应该去到函数__sort 来一探究竟了。

       __sort

       通过同样的方法,继续在stl_algo.h 里找到 __sort 的源代码。

       同样,只看函数体部分。

       一般来说,sort(a,a+n) 是对于区间 [公式] 进行排序,所以排序的前提是 __first != __last。

       如果能排序,那么通过两种方式:

       一部分一部分的看。

       __introsort_loop

       最上边注释的翻译:这是排序例程的帮助程序函数。

       在传参时,除了首尾迭代器和排序方式,还传了一个std::__lg(__last - __first) * 2,对应 __depth_limit。

       while 表示,当区间长度太小时,不进行排序。

       _S_threshold 是一个由 enum 定义的数,好像是叫枚举类型。

       当__depth_limit 为 [公式] 时,也就是迭代次数较多时,不使用 __introsort_loop,而是使用 __partial_sort(部分排序)。

       然后通过__unguarded_partition_pivot,得到一个奇怪的位置(这个函数的翻译是无防护分区枢轴)。

       然后递归处理这个奇怪的位置到末位置,再更新末位置,继续循环。

       鉴于本人比较好奇无防护分区枢轴是什么,于是先看的__unguarded_partition_pivot。

       __unguarded_partition_pivot

       首先,找到了中间点。

       然后__move_median_to_first(把中间的数移到第一位)。

       最后返回__unguarded_partition。

       __move_median_to_first

       这里的中间数,并不是数列的中间数,而是三个迭代器的中间值。

       这三个迭代器分别指向:第二个数,中间的数,最后一个数。

       至于为什么取中间的数,暂时还不是很清楚。

       `__unguarded_partition`

       传参传来的序列第二位到最后。

       看着看着,我好像悟了。

       这里应该就是实现快速排序的部分。

       上边的__move_median_to_first 是为了防止特殊数据卡 [公式] 。经过移动的话,第一个位置就不会是最小值,放在左半序列的数也就不会为 [公式] 。

       这样的话,__unguarded_partition 就是快排的主体。

       那么,接下来该去看部分排序了。

       __partial_sort

       这里浅显的理解为堆排序,至于具体实现,在stl_heap.h 里,不属于我们的讨论范围。

       (绝对不是因为我懒。)

       这样的话,__introsort_loop 就结束了。下一步就要回到 __sort。

       __final_insertion_sort

       其中某常量为enum { _S_threshold = };。

       其中实现的函数有两个:

       __insertion_sort

       其中的__comp 依然按照默认排序方式 < 来理解。

       _GLIBCXX_MOVE_BACKWARD3

       进入到_GLIBCXX_MOVE_BACKWARD3,是一个神奇的 #define:

       其上就是move_backward:

       上边的注释翻译为:

       __unguarded_linear_insert

       翻译为“无防护线性插入”,应该是指直接插入吧。

       当__last 的值比前边元素的值小的时候,就一直进行交换,最后把 __last 放到对应的位置。

       __unguarded_insertion_sort

       就是直接对区间的每个元素进行插入。

       总结

       到这里,sort 的源代码就剖完了(除了堆的那部分)。

       虽然没怎么看懂,但也理解了,sort 的源码是在快排的基础上,通过堆排序和插入排序来维护时间复杂度的稳定,不至于退化为 [公式] 。

       鬼知道我写这么多是为了干嘛……

STL源码剖析9-set、multiset

       STL源码剖析-set、multiset

       在深入探讨STL源码时,set与multiset是关键组件,它们皆基于红黑树实现。这些数据结构设计旨在高效处理有序集合。set类及其内部rb tree模板参数identity,定义在stl_function.h文件中,是仿函数的一种实现。这表明set类能够灵活地根据用户自定义的比较规则来组织数据,从而提供强大的灵活性。

       具体而言,stl_set.h文件中定义了set类,它封装了红黑树结构,用于存储无重复元素的集合。借助rb tree的特性,set能够保证插入、删除、查找等操作的时间复杂度为O(log n)。而identity参数的选择,使得用户能基于不同的比较逻辑自定义元素间的相对顺序,适应多种应用场景。

       多集类multiset则是在set的基础上扩展而来的,它允许集合中元素重复出现。这种设计使得multiset在需要存储有重复元素的有序集合时更为适用。与set类似,multiset同样基于红黑树实现,但其模板参数identity的用法与set相同,依然定义在stl_function.h中,以便实现自定义的比较逻辑。

       在stl_multiset.h文件中,可找到multiset类的定义。它继承自set,并通过增加对重复元素的支持,为用户提供了一个更灵活的数据结构选择。通过灵活运用multiset,开发人员能够轻松实现需要频繁插入、删除重复元素的有序集合,同时保持高效的操作性能。

       总结而言,set与multiset作为STL中的重要组件,分别针对无重复元素与允许重复元素的有序集合提供高效实现。通过自定义比较逻辑与红黑树结构的结合,它们不仅保证了数据的有序性,还提供了高效的操作性能,成为众多应用程序中不可或缺的数据结构。