【浪型指标源码】【php数字源码】【视频解析跳转源码】autojs作者软件源码_autojs 作者

时间:2024-11-15 06:09:27 分类:android开机启动 源码 来源:qq群机器源码

1.Auto.js快速入门实战教程
2.autojs之lua
3.autojs修改下拉框高度
4.求在autojs中使用opencv的作者作SIFT特征匹配例子

autojs作者软件源码_autojs 作者

Auto.js快速入门实战教程

       在深入学习Auto.js之前,我们先来了解一下它的软件基本概念。官方定义,源码Auto.js是作者作一种无需root权限的JavaScript自动化工具。本文主要针对有一定编程基础但对Auto.js不熟悉的软件读者,以实例指导开发自动完成淘宝领喵币任务的源码浪型指标源码脚本,帮助快速上手。作者作

       开始之前,软件需要声明,源码由于Auto.js暂时下线,作者作我通过群组获得了apk安装包和打包工具,软件但未经过官方验证,源码可能存在安全风险。作者作强烈建议自行编译,软件使用时需谨慎,源码自行承担可能的风险。安装手机上的Auto.js后,记得打开无障碍模式和启用悬浮框以便脚本执行。

       实战部分,首先打开淘宝,php数字源码目标是点击"领喵币"按钮。为了简化脚本,我们将预先打开喵铺主页。具体步骤如下:

       1. 通过函数viewWeb模拟浏览秒(考虑到可能的加载延迟,比官方要求多5秒),找到"去进店"或"去浏览"组件,点击进入广告页,完成后返回任务栏,直到"已完成"显示。

       2. 浏览广告时,通过gesture函数进行屏幕滑动操作,表示上滑。广告完成后,通过back()模拟返回键回到任务栏。

       3. 重要的是定位组件,desc()函数用于查找控件,其desc信息是"任务完成",务必查看控件信息以确保定位准确。

       4. 脚本测试:在Auto.js应用中导入脚本,视频解析跳转源码运行后在日志中查看执行情况,利用log()记录调试信息。

       最后,完成代码编写后,可以打包成apk。以下是一些额外知识点:

       定位选择器:findOnce()找到第一个符合条件的控件,找不到则返回null,findOne()可能造成卡顿,需谨慎使用。

       click()函数:点击时需确保元素的clickable属性为true,如果为false,可能需要点击其子或父控件。

       源代码可以参考github.com/ErazerContro...,v1.0.0版本。最后,我推荐我的另一个项目CodeTop,它收集了各大互联网公司的算法题库,欢迎大家参与。

autojs之lua

       在autojs中使用lua能提升自动化脚本的易语言提醒源码灵活性和功能。为了实现这一目标,依赖于一个名为luaJ的java实现的lua脚本解释器。下面将逐步展示如何在autojs中集成lua,以及实现的步骤和效果展示。

       首先,导入luaJ类,这是实现lua脚本运行的基础。确保在项目中正确导入此类,以利用luaJ的解释功能。

       接下来,创建一个Globals对象,用于管理全局状态。通过这个对象,可以轻松地在脚本中访问和设置全局变量,使脚本的使用更加灵活。

       之后,执行lua文件成为关键步骤。通过加载lua文件并调用其中的函数或执行指令,可以实现自动化的php订单查询源码任务,如模拟用户操作、自动化数据处理等。

       获取lua变量的值,是进一步操作的基础。这允许根据脚本中的逻辑,动态地访问和使用变量,从而实现复杂的功能。

       还有一种运行lua脚本的方式,即通过直接执行lua代码,而非加载文件。这种方式适合编写和执行简短的脚本,或在脚本执行过程中动态生成代码。

       在实际应用中,一个典型的lua代码示例可以是自动化点击操作。通过编写简单的脚本,可以模拟用户点击屏幕上的特定位置,实现自动化任务。

       完整源码示例如下:

       lua

       Globals.set('clickPosition', { x: , y: })

       function doClick()

        local position = Globals.get('clickPosition')

        TouchAction(device).tap({ x: position.x, y: position.y}).perform()

       end

       以上源码展示了如何在autojs中集成lua,通过导入luaJ类、创建全局变量、执行lua代码来实现自动化功能。使用这种方法,可以极大地提升自动化脚本的效率和可扩展性。

autojs修改下拉框高度

       在自动脚本开发中,有时我们可能需要对UI组件进行微调以适应特定需求。例如,当使用AutoJS处理下拉框时,我们可能会遇到下拉框过长的问题。本文将探讨如何解决AutoJS中的下拉框高度修改问题。

       在AutoJS中,我们首先需要了解下拉框的两种模式:弹框模式(dialog)和下拉框模式(dropdown)。弹框模式下,下拉框的高度不能通过直接设置高度来改变,因为这会引发错误。相比之下,下拉框模式提供了更多的自定义选项,包括设置高度。

       要修改下拉框的高度,我们通常会尝试反射访问下拉框的实例,然后修改相关属性。然而,这一方法在AutoJS中可能无法正常工作。这是因为AutoJS是基于Android SDK构建的,但并非完全等同于原生的Android环境。在AutoJS中,`spinner`组件是对其原生Android组件的封装,这导致了某些行为上的差异。

       深入AutoJS的源码,我们发现`spinner`的下拉框实例`mPopup`实际上属于`androidx.appcompat.widget.AppCompatSpinner`类。这解释了为什么我们不能直接在AutoJS中修改`mPopup`的高度。`AppCompatSpinner`是`Spinner`的子类,它提供了更丰富的样式和行为。在AutoJS中,由于封装了原生的组件,我们实际上不能直接访问或修改`mPopup`实例。

       通过创建一个简单的测试环境来验证这一点,我们定义了一个父类和一个子类,并尝试访问`name`字段。在子类中,当`name`字段被定义为私有时,我们无法访问它。然而,如果我们将它改为公有,子类可以访问到父类的`name`值。这表明,当父子类具有同名字段时,子类会优先访问自己的字段,除非被覆盖。

       基于上述发现,我们可以通过直接修改`AppCompatSpinner`类的`mPopup`属性来改变下拉框的高度。在AutoJS环境中,这需要通过反射来实现。一旦成功修改了高度,下拉框的显示效果将得到优化,不再显得过长。

       这个解决方案不仅解决了下拉框高度调整的问题,还为我们提供了一个重要的学习点:在将Android代码转换为AutoJS时,需要充分考虑AutoJS与Android环境之间的差异。这有助于我们在未来避免类似的陷阱,更好地利用脚本语言进行UI操作的定制。

       通过实践与理解,我们可以更灵活地应用AutoJS,解决各种复杂的UI调整需求。记住,每次遇到问题时,首先尝试从基础知识出发,理解背后的原因,而不是盲目依赖外部资源。这样,我们不仅能够解决当前的问题,还能构建更坚实的编程技能基础。

求在autojs中使用opencv的SIFT特征匹配例子

       // 导入OpenCV模块

       var cv = require("opencv");

       // 读取图像

       var img1 = cv.imread("/sdcard/img1.jpg");

       var img2 = cv.imread("/sdcard/img2.jpg");

       // 创建SIFT检测器对象

       var sift = new cv.FeatureDetector("SIFT");

       // 检测图像中的关键点和描述符

       var keypoints1 = sift.detect(img1);

       var keypoints2 = sift.detect(img2);

       var descriptors1 = sift.compute(img1, keypoints1);

       var descriptors2 = sift.compute(img2, keypoints2);

       // 创建FLANN匹配器对象

       var matcher = new cv.Matcher("FlannBased");

       // 对两幅图像中的关键点进行匹配

       var matches = matcher.match(descriptors1, descriptors2);

       // 筛选出最优的匹配结果

       var bestMatches = matcher.filterMatches(matches, 0.);

       // 在两幅图像中绘制匹配结果

       var output = new cv.Mat();

       cv.drawMatches(img1, keypoints1, img2, keypoints2, bestMatches, output);

       // 保存匹配结果图像

       cv.imwrite("/sdcard/matches.jpg", output);

       以上代码中,我们使用了AutoJS的require()函数导入OpenCV模块,并使用cv.imread()函数读取了两幅图像。然后,我们创建了一个SIFT检测器对象,并使用它检测了两幅图像中的关键点和描述符。接着,我们创建了一个FLANN匹配器对象,并使用它对两幅图像中的关键点进行了匹配。最后,我们筛选出了最优的匹配结果,并使用cv.drawMatches()函数在两幅图像中绘制了匹配结果,并将结果保存到了本地。