【weakhashmap put源码】【mvp源码怎么用】【图图影视源码】一维码生成源码

时间:2024-11-13 03:34:19 来源:oj系统ssh框架源码 编辑:c 远程命令源码

1.二维码开发包简介
2.(1)定义一个整型指针变量p,维码使它指向一个5个元素的一维数组. (2)使用指针移动的方式,输入5个整型数组元素.
3.VGGish源码学习
4.定义一个一维整型数组,有10个元素。(5,生成4,9,2,6,11,14,8,10,16)?
5.求背包问题的pascal源代码
6.PyTorch源码学习系列 - 2. Tensor

一维码生成源码

二维码开发包简介

       二维码,一种独特的源码数据承载方式,其构造原理是维码通过特定几何图形的黑白交替分布,以二进制的生成"0"和"1"比特流为基础,编码了丰富的源码weakhashmap put源码信息。这种在二维空间中展现的维码条码,允许信息在水平和垂直方向同时传递,生成从而在极小的源码空间内承载大量信息,实现了高效的维码信息处理。

       我们提供一系列全面的生成二维码开发包,旨在简化您的源码开发过程。其中包括:

       一维和二维条码编码控件与源代码,维码可帮助您快速生成和设计条码,生成满足不同应用场景的源码需求。

       同样,我们也提供一维和二维条码解码控件及源代码,确保您能够轻松读取和解析条码信息,实现数据的准确交互。

       图像压缩控件则帮助您优化图像处理,提高数据传输的效率和质量,尤其是在处理大容量图像时。

       串口通讯控件则是关键组件,它支持设备之间的直接通信,使得二维码在物联网、工业自动化等领域的应用更为便捷。

       这些工具包的集成使用,将极大地简化您的开发工作,使您能够更专注于核心业务,提升项目的整体效率和用户体验。

扩展资料

       二维码开发包,即二维条码开发工具包是面向软件开发商与系统集成商的一套特色鲜明、性能卓越、接口标准、使用方便的二次开 发软件包,可广泛应用在银行、商业物流、数据申报、电子商务等领域。

(1)定义一个整型指针变量p,使它指向一个5个元素的一维数组. (2)使用指针移动的方式,输入5个整型数组元素.

       源代码如下:

       #include<stdio.h>

       #include<stdlib.h>

       int main(){

       int a[5];

       int *p=a;                                   //定义一个整型指针变量p,使它指向一个5个元素的一维数组.

       int i;

       printf("Please input:");

       for(i=0;i<5;i++)

       scanf("%d",p+i);                        //使用指针移动的方式,输入5个整型数组元素.

       int *q=(int*)malloc(sizeof(int)*5);   //malloc函数动态分配5个整型数的地址空间。

       printf("Please input:");

       for(i=0;i<5;i++)

       scanf("%d",q+i);   //使用数组下标的方式输入5个整型元素。

       for(i=0;i<5;i++)     

       if(p[i]>q[i]){

       int t=p[i];

       p[i]=q[i];

       q[i]=t;

       }

       for(i=0;i<5;i++) //使用指针p和q分别访问两组数据

       printf("%d",p[i]);

       putchar('\n');

       for(i=0;i<5;i++)

       printf("%d",q[i]);

       putchar('\n');

       printf("p=%x\n",p); //分别输出交换后的两组数。

       printf("a=%x\n",a);

       printf("q=%x\n",q);

       free(q);

       q=NULL;//按十六进制方式输出p、a和q的地址。

       return 0;

       }

       运行结果如下:

扩展资料:

       指针的初始化、动态分配内存的方法

指针的初始化

       对指针进行初始化或赋值只能使用以下四种类型的值  :

       1. 0 值常量表达式,例如,在编译时可获得 0 值的整型 const对象或字面值常量 0。

       2. 类型匹配的对象的地址。

       3. 另一对象末的下一地址。

       4. 同类型的另一个有效指针。

       把 int 型变量赋给指针是非法的,尽管此 int 型变量的值可能为 0。但允

       许把数值 0 或在编译时可获得 0 值的 const 量赋给指针:

       int ival;

       int zero = 0;

       const int c_ival = 0;

       int *pi = ival; // error: pi initialized from int value of ival

       pi = zero;// error: pi assigned int value of zero

       pi = c_ival;// ok: c_ival is a const with compile-time value of 0

       pi = 0;// ok: directly initialize to literal constant 0 

       除了使用数值 0 或在编译时值为 0 的 const 量外,还可以使用 C++ 语言从 C 语言中继承下来的预处理器变量 NULL,该变量在 cstdlib头文件中定义,其值为 0。

       如果在代码中使用了这个预处理器变量,则编译时会自动被数值 0 替换。因此,把指针初始化为 NULL 等效于初始化为 0 值 [3]  :

       // cstdlib #defines NULL to 0

       int *pi = NULL; // ok: equivalent to int *pi = 0; 

动态分配内存的方法

       new可用来生成动态无名变量

       (1)new可用来生成动态无名变量

       如 int *p=new int;

       int *p=new int []; //动态数组的大小可以是变量或常量;而一般直接声明数组时,数组大小必须是常量

       又如:

       int *p1;

       double *p2;

       p1=new int⑿;

       p2=new double [];

       l 分别表示动态分配了用于存放整型数据的内存空间,将初值写入该内存空间,并将首地址值返回指针p1;

       l 动态分配了具有个双精度实型数组元素的数组,同时将各存储区的首地址指针返回给指针变量p2;

       对于生成二维及更高维的数组,应使用多维指针。

       以二维指针为例

       int **p=new int* [row]; //row是二维数组的行,p是指向一个指针数组的指针

       for(int i=0; i<row; i++)

       p[i]=new int [col]; //col是二维数组的列,p是指向一个int数组的指针

       删除这个二维数组

       for(int i = 0; i < row;i++)

       delete []p[i]; //先删除二维数组的列

       delete []p;

       ⑵使用完动态无名变量后应该及时释放,要用到 delete 运算符

       delete p; //释放单个变量

       delete [ ] p;//释放数组变量(不论数组是几维)

       相比于一般的变量声明,使用new和delete 运算符可方便的使用变量。

       百度百科-指针

       百度百科-动态分配内存

VGGish源码学习

       深入研究VGGish源码,该模型在模态视频分析领域颇为流行,尤其在生成语音部分的embedding特征向量方面。本文旨在基于官方源码进行学习。

       VGGish的代码库结构简洁,仅包含几个.py文件。文件大体功能明确,下文将结合具体代码进行详述。在开始之前,需要预先下载两个预训练文件,与.py文件放在同一目录。mvp源码怎么用

       VGGish的环境安装过程简便,对依赖包的版本要求宽松。只需依次执行安装命令,确保环境配置无误。运行vggish_smoke_test.py脚本,如显示"Looks Good To Me"则表明环境已搭建完成。

       着手VGGish模型的拆解,以vggish_inference_demo.py中的main函数为起点,分为两大部分:数据准备与前向推理获得Embedding特征及特征后处理。

       在数据准备阶段,首先确认输入是否为.wav文件,若非则自行生成。接着,使用vggish_input.py模块将输入数据调整为适用于模型的batch格式。假设输入音频长1分秒,采样频率为.1kHz,读取的wav_data为(,)的一维数组(若为双声道,则调整为单声道)。

       进入前向推理阶段,初始化特征处理对象pproc及记录器对象writer。通过vggish_slim.py模块构建VGG模型,并加载预训练权重。前向推理生成维的embedding特征向量。值得注意的是,输入数据为[num_samples, , ]的三维数据,在推理过程中会增加一维[num_samples,num_frames,num_bins,1],最终经过卷积层提取特征,FC层压缩,得到的embedding_batch为[num_samples,]。

       后处理环节中,应用PCA(主成分分析)对embedding特征进行调整。这一步骤旨在与YouTube-8M项目兼容,后者已发布用于数百万YouTube视频的PCA/whitened/quantized格式的音频和视觉嵌入。不过,若无需使用官方发布的AudioSet嵌入,则可直接使用网络输出的原始嵌入,无需进行PCA操作。

       本文旨在为读者提供深入理解VGGish源码的路径,通过详述模型的构建、安装与应用过程,旨在促进对模态视频分析技术的深入学习与应用。

定义一个一维整型数组,有个元素。(5,4,9,2,6,,,8,,)?

       C语言代码和运行结果如下:

       输出符合要求,望采纳~

       附源码:

#include <stdio.h>

int diff(int x, int y) { // 求差函数

    if (x > y)

        return x - y;

    else

        return y - x;

}

int main() {

    int a[] = { 5,4,9,2,6,,,8,,}; // 定义数组并初始化

    int max = a[0], min = a[0], sum, i;

    printf("下标为奇数的元素: ");

    for (i = 1; i < ; i++) {

        if (i % 2 == 1) // 输出下标为奇数的元素

            printf("%d ", a[i]);

        if (a[i] > max) // 求最大值

            max = a[i];

        else if (a[i] < min) // 求最小值

            min = a[i];

    }

    sum = diff(min, max); // 最大值与最小值的差,保证结果非负

    printf("\n最大值max=%d, 最小值min=%d, 最大值与最小值的差sum=%d\n", max, min, sum);

    return 0;

}

求背包问题的pascal源代码

       P: 背包问题

       题目

       有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

       基本思路

       这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

       用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{ f[i-1][v],f[i-1][v-c[i]]+w[i]}。

       这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

       注意f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N][V],而是f[N][0..V]的最大值。如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[i][v-1],图图影视源码这样就可以保证f[N][V]就是最后的答案。至于为什么这样就可以,由你自己来体会了。

       优化空间复杂度

       以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。

       先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下:

       for i=1..N

        for v=V..0

        f[v]=max{ f[v],f[v-c[i]]+w[i]};

       其中的f[v]=max{ f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{ f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P最简捷的解决方案,故学习只用一维数组解背包问题是十分必要的。

       总结

       背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。

       P: 完全背包问题

       题目

       有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

       基本思路

       这个问题非常类似于背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:f[i][v]=max{ f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}。这跟背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间则不是常数了,求解状态f[i][v]的时间是O(v/c[i]),总的复杂度是超过O(VN)的。

       将背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。

       一个简单有效的优化

       完全背包问题有一个很简单有效的优化,是这样的:若两件物品i、j满足c[i]<=c[j]且w[i]>=w[j],则将物品j去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。

       转化为背包问题求解

       既然背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为背包问题来解。最简单的想法是,考虑到第i种物品最多选V/c[i]件,于是可以把第i种物品转化为V/c[i]件费用及价值均不变的物品,然后求解这个背包问题。这样完全没有改进基本思路的寰宇棋牌源码出售时间复杂度,但这毕竟给了我们将完全背包问题转化为背包问题的思路:将一种物品拆成多件物品。

       更高效的转化方法是:把第i种物品拆成费用为c[i]*2^k、价值为w[i]*2^k的若干件物品,其中k满足c[i]*2^k<V。这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。这样把每种物品拆成O(log(V/c[i]))件物品,是一个很大的改进。 但我们有更优的O(VN)的算法。 * O(VN)的算法 这个算法使用一维数组,先看伪代码: <pre class"example"> for i=1..N for v=0..V f[v]=max{ f[v],f[v-c[i]]+w[i]};

       你会发现,这个伪代码与P的伪代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么P中要按照v=V..0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-c[i]]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v=0..V的顺序循环。这就是这个简单的程序为何成立的道理。

       这个算法也可以以另外的思路得出。例如,基本思路中的状态转移方程可以等价地变形成这种形式:f[i][v]=max{ f[i-1][v],f[i][v-c[i]]+w[i]},将这个方程用一维数组实现,便得到了上面的伪代码。

       总结

       完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“O(VN)的算法“的小节中给出。希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得出来的,最好能够自己想一种得到这些方程的方法。事实上,对每一道动态规划题目都思考其方程的意义以及如何得来,是加深对动态规划的理解、提高动态规划功力的好方法。

       P: 多重背包问题

       题目

       有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

       基本算法

       这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则:f[i][v]=max{ f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}。复杂度是O(V*∑n[i])。

       转化为背包问题

       另一种好想好写的基本方法是转化为背包求解:把第i种物品换成n[i]件背包中的物品,则得到了物品数为∑n[i]的背包问题,直接求解,复杂度仍然是O(V*∑n[i])。

       但是我们期望将它转化为背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品。另外,取超过n[i]件的策略必不能出现。

       方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]为,就将这种物品分成系数分别为1,2,4,6的四件物品。

       分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的付费论坛源码推荐和表示,这个证明可以分0..2^k-1和2^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。

       这样就将第i种物品分成了O(log n[i])种物品,将原问题转化为了复杂度为O(V*∑log n[i])的背包问题,是很大的改进。

       O(VN)的算法

       多重背包问题同样有O(VN)的算法。这个算法基于基本算法的状态转移方程,但应用单调队列的方法使每个状态的值可以以均摊O(1)的时间求解。由于用单调队列优化的DP已超出了NOIP的范围,故本文不再展开讲解。我最初了解到这个方法是在楼天成的“男人八题”幻灯片上。

       小结

       这里我们看到了将一个算法的复杂度由O(V*∑n[i])改进到O(V*∑log n[i])的过程,还知道了存在应用超出NOIP范围的知识的O(VN)算法。希望你特别注意“拆分物品”的思想和方法,自己证明一下它的正确性,并用尽量简洁的程序来实现。

       P: 混合三种背包问题

       问题

       如果将P、P、P混合起来。也就是说,有的物品只可以取一次(背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。应该怎么求解呢?

       背包与完全背包的混合

       考虑到在P和P中最后给出的伪代码只有一处不同,故如果只有两类物品:一类物品只能取一次,另一类物品可以取无限次,那么只需在对每个物品应用转移方程时,根据物品的类别选用顺序或逆序的循环即可,复杂度是O(VN)。伪代码如下:

       for i=1..N

        if 第i件物品是背包

        for v=V..0

        f[v]=max{ f[v],f[v-c[i]]+w[i]};

        else if 第i件物品是完全背包

        for v=0..V

        f[v]=max{ f[v],f[v-c[i]]+w[i]};

       再加上多重背包

       如果再加上有的物品最多可以取有限次,那么原则上也可以给出O(VN)的解法:遇到多重背包类型的物品用单调队列解即可。但如果不考虑超过NOIP范围的算法的话,用P中将每个这类物品分成O(log n[i])个背包的物品的方法也已经很优了。

       小结

       有人说,困难的题目都是由简单的题目叠加而来的。这句话是否公理暂且存之不论,但它在本讲中已经得到了充分的体现。本来背包、完全背包、多重背包都不是什么难题,但将它们简单地组合起来以后就得到了这样一道一定能吓倒不少人的题目。但只要基础扎实,领会三种基本背包问题的思想,就可以做到把困难的题目拆分成简单的题目来解决。

       P: 二维费用的背包问题

       问题

       二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]。

       算法

       费用加了一维,只需状态也加一维即可。设f[i][v][u]表示前i件物品付出两种代价分别为v和u时可获得的最大价值。状态转移方程就是:f[i][v][u]=max{ f[i-1][v][u],f[i-1][v-a[i]][u-b[i]]+w[i]}。如前述方法,可以只使用二维的数组:当每件物品只可以取一次时变量v和u采用顺序的循环,当物品有如完全背包问题时采用逆序的循环。当物品有如多重背包问题时拆分物品。

       物品总个数的限制

       有时,“二维费用”的条件是以这样一种隐含的方式给出的:最多只能取M件物品。这事实上相当于每件物品多了一种“件数”的费用,每个物品的件数费用均为1,可以付出的最大件数费用为M。换句话说,设f[v][m]表示付出费用v、最多选m件时可得到的最大价值,则根据物品的类型(、完全、多重)用不同的方法循环更新,最后在f[0..V][0..M]范围内寻找答案。

       另外,如果要求“恰取M件物品”,则在f[0..V][M]范围内寻找答案。

       小结

       事实上,当发现由熟悉的动态规划题目变形得来的题目时,在原来的状态中加一纬以满足新的限制是一种比较通用的方法。希望你能从本讲中初步体会到这种方法。

       P: 分组的背包问题

       问题

       有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

       算法

       这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选。也就是说设f[k][v]表示前k组物品花费费用v能取得的最大权值,则有f[k][v]=max{ f[k-1][v],f[k-1][v-c[i]]+w[i]|物品i属于第k组}。

       使用一维数组的伪代码如下:

       for 所有的组k

        for 所有的i属于组k

        for v=V..0

        f[v]=max{ f[v],f[v-c[i]]+w[i]}

       另外,显然可以对每组中的物品应用P中“一个简单有效的优化”。

       小结

       分组的背包问题将彼此互斥的若干物品称为一个组,这建立了一个很好的模型。不少背包问题的变形都可以转化为分组的背包问题(例如P),由分组的背包问题进一步可定义“泛化物品”的概念,十分有利于解题。

       P: 有依赖的背包问题

       简化的问题

       这种背包问题的物品间存在某种“依赖”的关系。也就是说,i依赖于j,表示若选物品i,则必须选物品j。为了简化起见,我们先设没有某个物品既依赖于别的物品,又被别的物品所依赖;另外,没有某件物品同时依赖多件物品。

       算法

       这个问题由NOIP金明的预算方案一题扩展而来。遵从该题的提法,将不依赖于别的物品的物品称为“主件”,依赖于某主件的物品称为“附件”。由这个问题的简化条件可知所有的物品由若干主件和依赖于每个主件的一个附件集合组成。

       按照背包问题的一般思路,仅考虑一个主件和它的附件集合。可是,可用的策略非常多,包括:一个也不选,仅选择主件,选择主件后再选择一个附件,选择主件后再选择两个附件……无法用状态转移方程来表示如此多的策略。(事实上,设有n个附件,则策略有2^n+1个,为指数级。)

       考虑到所有这些策略都是互斥的(也就是说,你只能选择一种策略),所以一个主件和它的附件集合实际上对应于P中的一个物品组,每个选择了主件又选择了若干个附件的策略对应于这个物品组中的一个物品,其费用和价值都是这个策略中的物品的值的和。但仅仅是这一步转化并不能给出一个好的算法,因为物品组中的物品还是像原问题的策略一样多。

       再考虑P中的一句话: 可以对每组中的物品应用P中“一个简单有效的优化”。 这提示我们,对于一个物品组中的物品,所有费用相同的物品只留一个价值最大的,不影响结果。所以,我们可以对主件i的“附件集合”先进行一次背包,得到费用依次为0..V-c[i]所有这些值时相应的最大价值f'[0..V-c[i]]。那么这个主件及它的附件集合相当于V-c[i]+1个物品的物品组,其中费用为c[i]+k的物品的价值为f'[k]+w[i]。也就是说原来指数级的策略中有很多策略都是冗余的,通过一次背包后,将主件i转化为V-c[i]+1个物品的物品组,就可以直接应用P的算法解决问题了。

       更一般的问题

       更一般的问题是:依赖关系以图论中“森林”的形式给出(森林即多叉树的集合),也就是说,主件的附件仍然可以具有自己的附件集合,限制只是每个物品最多只依赖于一个物品(只有一个主件)且不出现循环依赖。

       解决这个问题仍然可以用将每个主件及其附件集合转化为物品组的方式。唯一不同的是,由于附件可能还有附件,就不能将每个附件都看作一个一般的背包中的物品了。若这个附件也有附件集合,则它必定要被先转化为物品组,然后用分组的背包问题解出主件及其附件集合所对应的附件组中各个费用的附件所对应的价值。

       事实上,这是一种树形DP,其特点是每个父节点都需要对它的各个儿子的属性进行一次DP以求得自己的相关属性。这已经触及到了“泛化物品”的思想。看完P后,你会发现这个“依赖关系树”每一个子树都等价于一件泛化物品,求某节点为根的子树对应的泛化物品相当于求其所有儿子的对应的泛化物品之和。

       小结

       NOIP的那道背包问题我做得很失败,写了上百行的代码,却一分未得。后来我通过思考发现通过引入“物品组”和“依赖”的概念可以加深对这题的理解,还可以解决它的推广问题。用物品组的思想考虑那题中极其特殊的依赖关系:物品不能既作主件又作附件,每个主件最多有两个附件,可以发现一个主件和它的两个附件等价于一个由四个物品组成的物品组,这便揭示了问题的某种本质。

       我想说:失败不是什么丢人的事情,从失败中全无收获才是。

       P: 泛化物品

       定义

       考虑这样一种物品,它并没有固定的费用和价值,而是它的价值随着你分配给它的费用而变化。这就是泛化物品的概念。

       更严格的定义之。在背包容量为V的背包问题中,泛化物品是一个定义域为0..V中的整数的函数h,当分配给它的费用为v时,能得到的价值就是h(v)。

       这个定义有一点点抽象,另一种理解是一个泛化物品就是一个数组h[0..V],给它费用v,可得到价值h[V]。

       一个费用为c价值为w的物品,如果它是背包中的物品,那么把它看成泛化物品,它就是除了h(c)=w其它函数值都为0的一个函数。如果它是完全背包中的物品,那么它可以看成这样一个函数,仅当v被c整除时有h(v)=v/c*w,其它函数值均为0。如果它是多重背包中重复次数最多为n的物品,那么它对应的泛化物品的函数有h(v)=v/c*w仅当v被c整除且v/c<=n,其它情况函数值均为0。

       一个物品组可以看作一个泛化物品h。对于一个0..V中的v,若物品组中不存在费用为v的的物品,则h(v)=0,否则h(v)为所有费用为v的物品的最大价值。P中每个主件及其附件集合等价于一个物品组,自然也可看作一个泛化物品。

       泛化物品的和

       如果面对两个泛化物品h和l,要用给定的费用从这两个泛化物品中得到最大的价值,怎么求呢?事实上,对于一个给定的费用v,只需枚举将这个费用如何分配给两个泛化物品就可以了。同样的,对于0..V的每一个整数v,可以求得费用v分配到h和l中的最大价值f(v)。也即f(v)=max{ h(k)+l(v-k)|0<=k<=v}。可以看到,f也是一个由泛化物品h和l决定的定义域为0..V的函数,也就是说,f是一个由泛化物品h和l决定的泛化物品。

       由此可以定义泛化物品的和:h、l都是泛化物品,若泛化物品f满足f(v)=max{ h(k)+l(v-k)|0<=k<=v},则称f是h与l的和,即f=h+l。这个运算的时间复杂度是O(V^2)。

       泛化物品的定义表明:在一个背包问题中,若将两个泛化物品代以它们的和,不影响问题的答案。事实上,对于其中的物品都是泛化物品的背包问题,求它的答案的过程也就是求所有这些泛化物品之和的过程。设此和为s,则答案就是s[0..V]中的最大值。

       背包问题的泛化物品

       一个背包问题中,可能会给出很多条件,包括每种物品的费用、价值等属性,物品之间的分组、依赖等关系等。但肯定能将问题对应于某个泛化物品。也就是说,给定了所有条件以后,就可以对每个非负整数v求得:若背包容量为v,将物品装入背包可得到的最大价值是多少,这可以认为是定义在非负整数集上的一件泛化物品。这个泛化物品——或者说问题所对应的一个定义域为非负整数的函数——包含了关于问题本身的高度浓缩的信息。一般而言,求得这个泛化物品的一个子域(例如0..V)的值之后,就可以根据这个函数的取值得到背包问题的最终答案。

       综上所述,一般而言,求解背包问题,即求解这个问题所对应的一个函数,即该问题的泛化物品。而求解某个泛化物品的一种方法就是将它表示为若干泛化物品的和然后求之。

       小结

       本讲可以说都是我自己的原创思想。具体来说,是我在学习函数式编程的 Scheme 语言时,用函数编程的眼光审视各类背包问题得出的理论。这一讲真的很抽象,也许在“模型的抽象程度”这一方面已经超出了NOIP的要求,所以暂且看不懂也没关系。相信随着你的OI之路逐渐延伸,有一天你会理解的。

       我想说:“思考”是一个OIer最重要的品质。简单的问题,深入思考以后,也能发现更多。

       P: 背包问题问法的变化

       以上涉及的各种背包问题都是要求在背包容量(费用)的限制下求可以取到的最大价值,但背包问题还有很多种灵活的问法,在这里值得提一下。但是我认为,只要深入理解了求背包问题最大价值的方法,即使问法变化了,也是不难想出算法的。

       例如,求解最多可以放多少件物品或者最多可以装满多少背包的空间。这都可以根据具体问题利用前面的方程求出所有状态的值(f数组)之后得到。

       还有,如果要求的是“总价值最小”“总件数最小”,只需简单的将上面的状态转移方程中的max改成min即可。

       下面说一些变化更大的问法。

       输出方案

       一般而言,背包问题是要求一个最优值,如果要求输出这个最优值的方案,可以参照一般动态规划问题输出方案的方法:记录下每个状态的最优值是由状态转移方程的哪一项推出来的,换句话说,记录下它是由哪一个策略推出来的。便可根据这条策略找到上一个状态,从上一个状态接着向前推即可。

       还是以背包为例,方程为f[i][v]=max{ f[i-1][v],f[i-1][v-c[i]]+w[i]}。再用一个数组g[i][v],设g[i][v]=0表示推出f[i][v]的值时是采用了方程的前一项(也即f[i][v]=f[i-1][v]),g[i][v]表示采用了方程的后一项。注意这两项分别表示了两种策略:未选第i个物品及选了第i个物品。那么输出方案的伪代码可以这样写(设最终状态为f[N][V]):

       i=N

       v=V

       while(i>0)

        if(g[i][v]==0)

        print "未选第i项物品"

        else if(g[i][v]==1)

        print "选了第i项物品"

        v=v-c[i]

       另外,采用方程的前一项或后一项也可以在输出方案的过程中根据f[i][v]的值实时地求出来,也即不须纪录g数组,将上述代码中的g[i][v]==0改成f[i][v]==f[i-1][v],g[i][v]==1改成f[i][v]==f[i-1][v-c[i]]+w[i]也可。

       输出字典序最小的最优方案

       这里“字典序最小”的意思是1..N号物品的选择方案排列出来以后字典序最小。以输出背包最小字典序的方案为例。

       一般而言,求一个字典序最小的最优方案,只需要在转移时注意策略。首先,子问题的定义要略改一些。我们注意到,如果存在一个选了物品1的最优方案,那么答案一定包含物品1,原问题转化为一个背包容量为v-c[1],物品为2..N的子问题。反之,如果答案不包含物品1,则转化成背包容量仍为V,物品为2..N的子问题。不管答案怎样,子问题的物品都是以i..N而非前所述的1..i的形式来定义的,所以状态的定义和转移方程都需要改一下。但也许更简易的方法是先把物品逆序排列一下,以下按物品已被逆序排列来叙述。

       在这种情况下,可以按照前面经典的状态转移方程来求值,只是输出方案的时候要注意:从N到1输入时,如果f[i][v]==f[i-v]及f[i][v]==f[i-1][f-c[i]]+w[i]同时成立,应该按照后者(即选择了物品i)来输出方案。

       求方案总数

       对于一个给定了背包容量、物品费用、物品间相互关系(分组、依赖等)的背包问题,除了再给定每个物品的价值后求可得到的最大价值外,还可以得到装满背包或将背包装至某一指定容量的方案总数。

       对于这类改变问法的问题,一般只需将状态转移方程中的max改成sum即可。例如若每件物品均是背包中的物品,转移方程即为f[i][v]=sum{ f[i-1][v],f[i-1][v-c[i]]+w[i]},初始条件f[0][0]=1。

       事实上,这样做可行的原因在于状态转移方程已经考察了所有可能的背包组成方案。

       最优方案的总数

       这里的最优方案是指物品总价值最大的方案。还是以背包为例。

       结合求最大总价值和方案总数两个问题的思路,最优方案的总数可以这样求:f[i][v]意义同前述,g[i][v]表示这个子问题的最优方案的总数,则在求f[i][v]的同时求g[i][v]的伪代码如下:

       for i=1..N

        for v=0..V

        f[i][v]=max{ f[i-1][v],f[i-1][v-c[i]]+w[i]}

        g[i][v]=0

        if(f[i][v]==f[i-1][v])

        inc(g[i][v],g[i-1][v]

        if(f[i][v]==f[i-1][v-c[i]]+w[i])

        inc(g[i][v],g[i-1][v-c[i]])

       如果你是第一次看到这样的问题,请仔细体会上面的伪代码。

       小结

       显然,这里不可能穷尽背包类动态规划问题所有的问法。甚至还存在一类将背包类动态规划问题与其它领域(例如数论、图论)结合起来的问题,在这篇论背包问题的专文中也不会论及。但只要深刻领会前述所有类别的背包问题的思路和状态转移方程,遇到其它的变形问法,只要题目难度还属于NOIP,应该也不难想出算法。

       触类旁通、举一反三,应该也是一个OIer应有的品质吧。

PyTorch源码学习系列 - 2. Tensor

       本系列文章同步发布于微信公众号小飞怪兽屋及知乎专栏PyTorch源码学习-知乎(zhihu.com),欢迎关注。

       若问初学者接触PyTorch应从何学起,答案非神经网络(NN)或自动求导系统(Autograd)莫属,而是看似平凡却无所不在的张量(Tensor)。正如编程初学者在控制台输出“Hello World”一样,Tensor是PyTorch的“Hello World”,每个初学者接触PyTorch时,都通过torch.tensor函数创建自己的Tensor。

       编写上述代码时,我们已步入PyTorch的宏观世界,利用其函数创建Tensor对象。然而,Tensor是如何创建、存储、设计的?今天,让我们深入探究Tensor的微观世界。

       Tensor是什么?从数学角度看,Tensor本质上是多维向量。在数学里,数称为标量,一维数据称为向量,二维数据称为矩阵,三维及以上数据统称为张量。维度是衡量事物的方式,例如时间是一种维度,销售额相对于时间的关系可视为一维Tensor。Tensor用于表示多维数据,在不同场景下具有不同的物理含义。

       如何存储Tensor?在计算机中,程序代码、数据和生成数据都需要加载到内存。存储Tensor的物理媒介是内存(GPU上是显存),内存是一块可供寻址的存储单元。设计Tensor存储方案时,需要先了解其特性,如数组。创建数组时,会向内存申请一块指定大小的连续存储空间,这正是PyTorch中Strided Tensor的存储方式。

       PyTorch引入了步伐(Stride)的概念,表示逻辑索引的相对距离。例如,一个二维矩阵的Stride是一个大小为2的一维向量。Stride用于快速计算元素的物理地址,类似于C/C++中的多级指针寻址方式。Tensor支持Python切片操作,因此PyTorch引入视图概念,使所有Tensor视图共享同一内存空间,提高程序运行效率并减少内存空间浪费。

       PyTorch将Tensor的物理存储抽象成一个Storage类,与逻辑表示类Tensor解耦,建立Tensor视图和物理存储Storage之间多对一的联系。Storage是声明类,具体实现在实现类StorageImpl中。StorageImp有两个核心成员:Storage和StorageImpl。

       PyTorch的Tensor不仅用Storage类管理物理存储,还在Tensor中定义了很多相关元信息,如size、stride和dtype,这些信息都存在TensorImpl类中的sizes_and_strides_和data_type_中。key_set_保存PyTorch对Tensor的layout、device和dtype相关的调度信息。

       PyTorch创建了一个TensorBody.h的模板文件,在该文件中创建了一个继承基类TensorBase的类Tensor。TensorBase基类封装了所有与Tensor存储相关的细节。在类Tensor中,PyTorch使用代码自动生成工具将aten/src/ATen/native/native_functions.yaml中声明的函数替换此处的宏${ tensor_method_declarations}

       Python中的Tensor继承于基类_TensorBase,该类是用Python C API绑定的一个C++类。THPVariable_initModule函数除了声明一个_TensorBase Python类之外,还通过torch::autograd::initTorchFunctions(module)函数声明Python Tensor相关的函数。

       torch.Tensor会调用C++的THPVariable_tensor函数,该函数在文件torch/csrc/autograd/python_torch_functions_manual.cpp中。在经过一系列参数检测之后,在函数结束之前调用了torch::utils::tensor_ctor函数。

       torch::utils::tensor_ctor在文件torch/csrc/utils/tensor_new.cpp中,该文件包含了创建Tensor的一些工具函数。在该函数中调用了internal_new_from_data函数创建Tensor。

       recursive_store函数的核心在于

       Tensor创建后,我们需要通过函数或方法对其进行操作。Tensor的方法主要通过torch::autograd::variable_methods和extra_methods两个对象初始化。Tensor的函数则是通过initTorchFunctions初始化,调用gatherTorchFunctions来初始化函数,主要分为两种函数:内置函数和自定义函数。

copyright © 2016 powered by 皮皮网   sitemap