本站提供最佳分销源码定制平台服务,欢迎转载和分享。

【中医培训学校网站源码】【.net官网源码】【ribbin版c 源码】读懂linux 源码_linux源码解读

2024-11-25 05:03:16 来源:逆推源码 分类:百科

1.剖析Linux内核源码解读之《实现fork研究(一)》
2.一文深入了解Linux内核源码pdflush机制
3.Linux内核源码解析---mount挂载原理
4.Linux内核源码解析---cgroup实现之整体架构与初始化
5.linux内核源码:文件系统——可执行文件的读懂加载和执行
6.如何有效的阅读linux内核源码?

读懂linux 源码_linux源码解读

剖析Linux内核源码解读之《实现fork研究(一)》

       Linux内核源码解析:深入探讨fork函数的实现机制(一)

       首先,我们关注的源源码焦点是fork函数,它是解读Linux系统创建新进程的核心手段。本文将深入剖析从用户空间应用程序调用glibc库,读懂直至内核层面的源源码具体过程。这里假设硬件平台为ARM,解读中医培训学校网站源码使用Linux内核3..3和glibc库2.版本。读懂这些版本的源源码库和内核代码可以从ftp.gnu.org获取。

       在glibc层面,解读针对不同CPU架构,读懂进入内核的源源码步骤有所不同。当glibc准备调用kernel时,解读它会将参数放入寄存器,读懂通过软中断(SWI) 0x0指令进入保护模式,源源码最终转至系统调用表。解读在arm平台上,系统调用表的结构如下:

       系统调用表中的CALL(sys_clone)宏被展开后,会将sys_clone函数的地址放入pc寄存器,这个函数实际由SYSCALL_DEFINEx定义。在do_fork函数中,关键步骤包括了对父进程和子进程的跟踪,以及对子进程进行初始化,包括内存分配和vfork处理等。

       总的来说,调用流程是这样的:应用程序通过软中断触发内核处理,通过系统调用表选择并执行sys_clone,然后调用do_fork函数进行具体的进程创建操作。do_fork后续会涉及到copy_process函数,这个函数是理解fork核心逻辑的重要入口,包含了丰富的内核知识。在后续的.net官网源码内容中,我将深入剖析copy_process函数的工作原理。

一文深入了解Linux内核源码pdflush机制

       在进程安全监控中,遇到进程长时间处于不可中断的睡眠状态(D状态,超过8分钟),可能导致系统崩溃。这种情况下,涉及到Linux内核的pdflush机制,即如何将内存缓存中的数据刷回磁盘。pdflush线程的数量可通过/proc/sys/vm/nr_pdflush_threads调整,范围为2到8个。

       当内存不足或需要强制刷新时,脏页的刷新会通过wakeup_pdflush函数触发,该函数调用background_writeout函数进行处理。background_writeout会监控脏页数量,当超过脏数据临界值(脏背景比率,通过dirty_background_ratio调整)时,会分批刷磁盘,直到比率下降。

       内核定时器也参与脏页刷新,启动wb_timer定时器,周期性地检查脏页并刷新。系统会在脏页存在超过dirty_expire_centisecs(可以通过/proc/sys/vm/dirty_expire_centisecs设置)后启动刷新。用户态的WRITE写文件操作也会触发脏页刷新,以平衡脏页比率,避免阻塞写操作。

       总结系统回写脏页的三种情况:定时器触发、内存不足时分批写、写操作触发pdflush。关键参数包括dirty_background_ratio、dirty_expire_centisecs、ribbin版c 源码dirty_ratio和dirty_writeback_centisecs,它们分别控制脏数据比例、回写时间、用户自定义回写和pdflush唤醒频率。

       在大数据项目中,写入量大时,应避免依赖系统缓存自动刷回,尤其是当缓存不足以满足写入速度时,可能导致写操作阻塞。在逻辑设计时,应谨慎使用系统缓存,对于对性能要求高的场景,建议自定义缓存,同时在应用层配合使用系统缓存以优化高楼贴等特定请求的性能。预读策略是提升顺序读性能的重要手段,Linux根据文件顺序性和流水线预读进行优化,预读大小通过快速扩张过程动态调整。

       最后,注意pread和pwrite在多线程io操作中的优势,以及文件描述符管理对性能的影响。在使用pread/pwrite时,即使每个线程有自己的文件描述符,它们最终仍作用于同一inode,不会额外提升IO性能。

Linux内核源码解析---mount挂载原理

       Linux磁盘挂载命令"mount -t xxx /dev/sdb1 abc/def/"的底层实现原理非常值得深入了解。从内核初始化的vfsmount开始说起。

       内核初始化过程中,主要关注"main.c"中的vfs_caches_init函数,这个方法与mount紧密相连。接着,涨跌家数源码跟进"mnt_init"和"namespace.c",关键在于最后的三个函数,它们控制了挂载过程的实现。

       在"mount.c"中,sysfs_fs_type结构中包含了获取超级块的函数指针,而"init_rootfs"则注册了rootfs类型的文件系统。挂载系统调用sys_mount中的dev_name, dir_name和type参数,分别对应设备名称、挂载目录和文件系统类型。

       "do_mount"方法通过path_lookup收集挂载目录信息,创建nameidata结构,然后调用do_add_mount进行实际挂载。这个过程涉及do_kern_mount和graft_tree,尽管具体实现较为复杂,但核心在于创建vfsmount并将其与namespace关联。

       在"graft_tree"中的判断逻辑中,vfsmount被创建并与其父mount和挂载目录的dentry建立关系。在"attach_mnt"方法中,新vfsmount与现有结构关联,设置挂载点和父vfsmount,最终形成挂载的概念,即为设备分配vfsmount,并将其与指定目录和vfsmount结合,成为vfs系统的一部分。

Linux内核源码解析---cgroup实现之整体架构与初始化

       cgroup在年由Google工程师开发,于年被融入Linux 2.6.内核。它旨在管理不同进程组,监控一组进程的行为和资源分配,是Docker和Kubernetes的基石,同时也被高版本内核中的hive 源码解析 thriftLXC技术所使用。本文基于最早融入内核中的代码进行深入分析。

       理解cgroup的核心,首先需要掌握其内部的常用术语,如子系统、层级、cgroupfs_root、cgroup、css_set、cgroup_subsys_state、cg_cgroup_link等。子系统负责控制不同进程的行为,例如CPU子系统可以控制一组进程在CPU上执行的时间占比。层级在内核中表示为cgroupfs_root,一个层级控制一批进程,层级内部绑定一个或多个子系统,每个进程只能在一个层级中存在,但一个进程可以被多个层级管理。cgroup以树形结构组织,每一棵树对应一个层级,层级内部可以关联一个或多个子系统。

       每个层级内部包含的节点代表一个cgroup,进程结构体内部包含一个css_set,用于找到控制该进程的所有cgroup,多个进程可以共用一个css_set。cgroup_subsys_state用于保存一系列子系统,数组中的每一个元素都是cgroup_subsys_state。cg_cgroup_link收集不同层级的cgroup和css_set,通过该结构可以找到与之关联的进程。

       了解了这些概念后,可以进一步探索cgroup内部用于结构转换的函数,如task_subsys_state、find_existing_css_set等,这些函数帮助理解cgroup的内部运作。此外,cgroup_init_early和cgroup_init函数是初始化cgroup的关键步骤,它们负责初始化rootnode和子系统的数组,为cgroup的使用做准备。

       最后,需要明确Linux内一切皆文件,cgroup基于VFS实现。内核启动时进行初始化,以确保系统能够正确管理进程资源。cgroup的初始化过程分为早期初始化和常规初始化,其中早期初始化用于准备cpuset和CPU子系统,确保它们在系统运行时能够正常工作。通过这些步骤,我们可以深入理解cgroup如何在Linux内核中实现资源管理和进程控制。

linux内核源码:文件系统——可执行文件的加载和执行

       本文深入探讨Linux内核源码中文件系统中可执行文件的加载与执行机制。与Windows中的PE格式和exe文件不同,Linux采用的是ELF格式。尽管这两种操作系统都允许用户通过双击文件来执行程序,但Linux的实现方式和底层操作有所不同。

       在Linux系统中,双击可执行文件能够启动程序,这背后涉及一系列复杂的底层工作。首先,我们简要了解进程间的数据访问方式。在用户态运行时,ds和fs寄存器指向用户程序的数据段。然而,当代码处于内核态时,ds指向内核数据段,而fs仍然指向用户态数据段。为了确保正确访问不同态下的数据,需要频繁地调整fs寄存器的值。

       当用户输入参数时,这些信息需要被存储在进程的内存空间中。Linux为此提供了KB的个页面内存空间,用于存放用户参数和环境变量。通过一系列复制操作,参数被安全地存放到了进程的内存中。尽管代码实现可能显得较为复杂,但其核心功能与传统复制函数(如memcpy)相似。

       为了理解参数和环境变量的处理,我们深入探讨了如何通过不同fs值来访问内存中的变量。argv是一个指向参数的指针,argv*和argv**指向不同的地址,它们可能位于内核态或用户态。在访问这些变量时,需要频繁地切换fs值,以确保正确读取内存中的数据。通过调用set_fs函数来改变fs值,并在读取完毕后恢复,实现不同态下的数据访问。

       在Linux的加载过程中,参数和环境变量的处理涉及到特定的算法和逻辑,以确保正确解析和执行程序。例如,通过检查每个参数是否为空以及参数之间的空格分隔,来计算参数的数量。同时,文件的头部信息对于识别文件类型至关重要。早期版本的Linux文件头部信息相当简单,仅包含几个字段。这些头部信息为操作系统提供了识别文件类型的基础。

       为了实现高效文件执行,Linux使用了一系列的内存布局和管理技术。在执行文件时,操作系统负责将参数列表、环境变量、栈、数据段和代码段等组件放入进程的内存空间。这种布局确保了程序能够按照预期运行。

       最后,文章提到了一些高级技术,如线程切换、内存管理和文件系统操作,这些都是Linux内核源码中关键的部分。尽管这些技术在日常编程中可能不常被直接使用,但它们对于理解Linux的底层工作原理至关重要。通过深入研究Linux内核源码,开发者能够更全面地掌握操作系统的工作机制,从而在实际项目中提供更高效、更安全的解决方案。

如何有效的阅读linux内核源码?

       在面对庞大而复杂的 Linux 内核源码时,许多人会感到困惑,不知道如何开始深入阅读和理解。本文旨在提供一套高效阅读 Linux 内核源码的方法,帮助读者以实际问题为导向,逐步构建对内核的理解。

       首先,明确阅读目的。阅读内核源码的目的是为了更好地解决实际工作中的问题,而不是为了追求对内核本身的全面理解。例如,当你在工作中遇到了网络性能问题,可能需要理解网络包从网卡到应用程序的过程,此时阅读相关源码并深入研究网络模块的工作机制,将帮助你找出问题所在。

       以实际问题为核心,你应当从实际工作中遇到的问题出发,收集相关资料,包括阅读书籍、搜索网络文章,甚至动手编写测试代码来验证理解的正确性。通过这种方式,你可以将理论知识与实际应用相结合,逐步掌握内核的运作机制。

       对于阅读源码的方法,可以将其分为“地毯式轰炸”和“精确制导”两种。不推荐的方式是“地毯式轰炸”,即无目的地阅读所有源码,这种做法耗时长且与实际工作关联度低。推荐的方式是“精确制导”,即针对特定问题进行有目的的阅读,专注于与问题相关的关键代码段,通过逐步深入理解,将点状知识连成面,形成全面而深刻的理解。

       在阅读过程中,使用合适的工具可以极大地提高效率。例如,Linux 源码下载、优秀的电子书资源、在线源码搜索引擎、集成开发环境(IDE)如 Visual Studio Code,以及快捷键等功能,都能帮助你更高效地定位、理解和使用源码。通过将实际问题作为学习的中心,结合这些工具,你将能够更有效地阅读和理解 Linux 内核源码。

       最后,强调学以致用的重要性。阅读源码的目的在于解决实际问题,而非追求理论知识的全面掌握。通过实际应用和分享知识,你将能够更深刻地理解内核的工作原理,并将其应用到实际工作中。关注实际问题,明确目标,结合实用工具和方法,你将能够在阅读 Linux 内核源码的旅程中取得显著进步。

【本文网址:http://5o.net.cn/news/14f221997766.html 欢迎转载】

copyright © 2016 powered by 皮皮网   sitemap