1.求在autojs中使用opencv的源码SIFT特征匹配例子
2.SIFT算法原理与源码分析
3.SURF、SIFT 特征检测
求在autojs中使用opencv的源码SIFT特征匹配例子
// 导入OpenCV模块
var cv = require("opencv");
// 读取图像
var img1 = cv.imread("/sdcard/img1.jpg");
var img2 = cv.imread("/sdcard/img2.jpg");
// 创建SIFT检测器对象
var sift = new cv.FeatureDetector("SIFT");
// 检测图像中的关键点和描述符
var keypoints1 = sift.detect(img1);
var keypoints2 = sift.detect(img2);
var descriptors1 = sift.compute(img1, keypoints1);
var descriptors2 = sift.compute(img2, keypoints2);
// 创建FLANN匹配器对象
var matcher = new cv.Matcher("FlannBased");
// 对两幅图像中的关键点进行匹配
var matches = matcher.match(descriptors1, descriptors2);
// 筛选出最优的匹配结果
var bestMatches = matcher.filterMatches(matches, 0.);
// 在两幅图像中绘制匹配结果
var output = new cv.Mat();
cv.drawMatches(img1, keypoints1, img2, keypoints2, bestMatches, output);
// 保存匹配结果图像
cv.imwrite("/sdcard/matches.jpg", output);
以上代码中,我们使用了AutoJS的源码require()函数导入OpenCV模块,并使用cv.imread()函数读取了两幅图像。源码然后,源码我们创建了一个SIFT检测器对象,源码友价t5源码正版源码并使用它检测了两幅图像中的源码关键点和描述符。接着,源码我们创建了一个FLANN匹配器对象,源码并使用它对两幅图像中的源码关键点进行了匹配。最后,源码我们筛选出了最优的源码匹配结果,并使用cv.drawMatches()函数在两幅图像中绘制了匹配结果,源码并将结果保存到了本地。源码
SIFT算法原理与源码分析
SIFT算法的源码精密解析:关键步骤与核心原理
1. 准备阶段:特征提取与描述符生成 在SIFT算法中,首先对box.png和box_in_scene.png两张图像进行关键点检测。利用Python的易语言更新源码pysift库,通过一系列精细步骤,我们从灰度图像中提取出关键点,并生成稳定的描述符,以确保在不同尺度和角度下依然具有较高的匹配性。 2. 高斯金字塔构建计算基础图像的高斯模糊,sigma值选择1.6,先放大2倍,确保模糊程度适中。qq空间易语言源码
通过连续应用高斯滤波,构建高斯金字塔,每层图像由模糊和下采样组合而成,每组octave包含5张图像,从底层开始,逐渐减小尺度。
3. 极值点检测与极值点定位在高斯差分金字塔中寻找潜在的兴趣点,利用邻域定义,网页播放器 源码选择尺度空间中的极值点,这些点具有旋转不变性和稳定性。
使用quadratic fit细化极值点位置,确保匹配点的精度。
4. 特征描述与方向计算从细化的位置计算关键点方向,通过梯度方向和大小统计直方图,确定主次方向,以增强描述符的获取访客的qq源码旋转不变性。
通过描述符生成过程,旋转图像以匹配关键点梯度与x轴,划分x格子并加权叠加,生成维的SIFT特征描述符。
5. 精度校验与匹配处理利用FLANN进行k近邻搜索,执行Lowe's ratio test筛选匹配点,确保足够的匹配数。
执行RANSAC方法估计模板与场景之间的homography,实现3D视角变化适应。
在场景图像上标注检测到的模板并标识SIFT匹配点。
SIFT的独特性:它提供了尺度不变、角度不变以及在一定程度上抵抗3D视角变化的特征,是计算机视觉领域中重要的特征检测和描述算法。SURF、SIFT 特征检测
介绍:SURF特征检测是一种尺度不变特征检测技术,它能够在不同尺度下检测到一致的物体关键点,并且每个检测到的特征点都关联一个尺度因子。理想状态下,两个尺度因子之间的比值应当与图像尺度的比值相同。SURF特征的全称是加速稳健特征(Speeded Up Robust Feature),它不仅实现了尺度不变性,还具备高效计算的特点。
实现原理:
例子代码:
效果图
2. SIFT特征检测
实现原理:
例子代码:
效果图
欢迎关注我的微信公众号“OpenCV图像处理算法”,主要分享我在学习图像处理算法过程中的心得,内容涵盖特征提取、目标跟踪、定位、机器学习和深度学习等领域。每个案例都会附上源码和相关资料,期待与同行交流,共同进步。