1.[推理部署]🔥🔥🔥 全网最详细 ONNXRuntime C++/Java/Python 资料!源码
2.[推理部署]👋解决: ONNXRuntime(Python) GPU 部署配置记录
3.ONNX-Runtime一本通:综述&使用&源码分析(持续更新)
4.onnxruntime源码学习-编译与调试 (公网&内网)
[推理部署]🔥🔥🔥 全网最详细 ONNXRuntime C++/Java/Python 资料!源码
在整理使用TNN、源码MNN、源码NCNN、源码ONNXRuntime系列笔记的源码湖北app商城源码过程中,我决定整理一份关于ONNXRuntime的源码详细资料,以方便自己在遇到问题时快速查找。源码这份文档包括了从官方文档到实践经验的源码综合内容,主要面向C++、源码Java和Python用户。源码
首先,源码我们从官方资料开始,源码这是源码理解ONNXRuntime的基础。接着,源码我们深入探讨了ONNXRuntime的C++和Java版本的参考文档,提供具体的使用方法和实例。对于Java用户,我们还提供了Docker镜像,便于在不同环境下进行部署。同时,我们也介绍了源码编译的过程,对于想要深入理解其内部机制的开发者尤为有用。
为了确保与ONNX的winform mvc 框架源码兼容性,我们关注了各转换工具的兼容性问题,确保ONNXRuntime能无缝集成到现有项目中。我们还特别强调了如何获取Ort::Value的值,包括通过At>、裸指针和引用&来操作数据的细节。其中,At>通过计算内存位置并提供非const引用,允许用户直接修改内存中的值。
在源码应用案例部分,我们分享了从目标检测到风格迁移等广泛领域的实际应用。这些案例展示了ONNXRuntime的强大功能和灵活性,包括人脸识别、抠图、人脸关键点检测、头部姿态估计、人脸属性识别、图像分类、语义分割、超分辨率等多个任务。
为了进一步深化理解,我们提供了C++ API的使用案例,涵盖了从基本功能到高级应用的逐步介绍。例如,捞钱王指标源码我们在目标检测、人脸识别、抠图、人脸检测、人脸关键点检测、头部姿态估计、人脸属性识别、图像分类、语义分割、风格迁移和着色、超分辨率等多个场景进行了实践。
这份资料将持续更新,如果您对此感兴趣,欢迎关注,点赞和收藏以获取最新内容。同时,您也可以从我的仓库下载Markdown版本的文档。整理这份资料并不容易,但能够帮助开发者们节省时间,加速项目进展。
[推理部署]👋解决: ONNXRuntime(Python) GPU 部署配置记录
在探索深度学习推理部署过程中,ONNXRuntime(GPU)版本提供了简化ONNX模型转换和GPU加速的途径。本文将分享ONNXRuntime GPU部署的linux 源码 do once关键步骤,以助于高效解决问题和提高部署效率。
首先,选择正确的基础镜像是部署ONNXRuntime GPU的关键。ONNXRuntime GPU依赖CUDA库,因此,镜像中必须包含CUDA动态库。在Docker Hub搜索PyTorch镜像时,选择带有CUDA库的devel版本(用于编译)是明智之举,尽管runtime版本在某些情况下也有效,但devel版本提供了更好的CUDA库支持。
对于runtime和devel版本的选择,重要的是理解它们各自的用途。runtime版本适用于直接使用ONNXRuntime GPU进行推理,而devel版本则用于构建过程,确保在构建过程中可以访问CUDA库,从而避免因版本不匹配导致的问题。在使用pip安装时,两者都是可行的;若需从源码构建,则需使用devel版本。
启动Docker镜像时,使用nvidia-docker启动并登录PyTorch 1.8.0容器至关重要,以确保能够访问GPU资源。确保宿主机显卡驱动正常,php源码翻译工具以避免在容器内无法使用GPU的情况。
安装ONNXRuntime-GPU版本后,通过pip进行安装,检查是否能正常利用GPU资源。ONNXRuntime将自动识别可用的CUDA执行提供者(如TensorrtExecutionProvider和CUDAExecutionProvider),确保GPU推理加速。
若发现无法利用GPU,可以尝试调整配置或确保已正确设置CUDA路径到PATH环境变量(在使用devel版本时)。在成功安装和配置后,ONNXRuntime将提供GPU加速的推理性能提升。
在部署ONNXRuntime GPU时,确保在新建InferenceSession时加入TensorrtExecutionProvider和CUDAExecutionProvider,以充分利用GPU资源。性能测试显示,与CPU相比,GPU部署在推理任务上表现更优。
总结而言,ONNXRuntime GPU部署涉及选择合适的基础镜像、正确启动Docker容器、安装ONNXRuntime GPU、配置GPU资源访问以及优化推理性能。通过遵循上述步骤,可以顺利实现ONNX模型在GPU上的高效部署。
ONNX-Runtime一本通:综述&使用&源码分析(持续更新)
ONNX-Runtime详解:架构概览、实践与源码解析
ONNX-Runtime作为异构模型运行框架,其核心机制是先对原始ONNX模型进行硬件无关的图优化,之后根据支持的硬件选择相应的算子库,将模型分解为子模型并发在各个平台执行。它提供同步模式的计算支持,暂不包括异步模式。ORT(onnx-runtime缩写)是主要组件,包含了图优化(graph transformer)、执行提供者(EP)等关键模块。
EP是执行提供者,它封装了硬件特有的内存管理和算子库,可能只支持部分ONNX算子,但ORT的CPU默认支持所有。ORT统一定义了tensor,但EP可有自定义,需提供转换接口。每个推理会话的run接口支持多线程,要求kernel的compute函数是并发友好的。
ORT具有后向兼容性,能运行旧版本ONNX模型,并支持跨平台运行,包括Windows、Linux、macOS、iOS和Android。安装和性能优化是实际应用中的重要步骤。
源码分析深入到ORT的核心模块,如框架(内存管理、tensor定义等)、图结构(构建、排序与修改)、优化器(包括RewriteRule和GraphTransformer),以及平台相关的功能如线程管理、文件操作等。Session是推理流程的管理核心,构造函数初始化模型和线程池,load负责模型反序列化,initialize则进行图优化和准备工作。
ORT中的执行提供者(EP)包括自定义实现和第三方库支持,如TensorRT、CoreML和SNPE。其中,ORT与CoreML和TensorRT的集成通过在线编译,将ONNX模型传递给这些框架进行计算。ORT通过统一的接口管理元框架之上的算子库,但是否支持异构运算(如SNPE与CPU库的混合)仍有待探讨。
总结来说,ONNX-Runtime处理多种模型格式,包括原始ONNX和优化过的ORT模型,以适应多平台和多设备需求。它通过复杂的架构和优化技术,构建了可扩展且高效的推理软件栈,展示了flatbuffer在性能和体积方面的优势。
附录:深入探讨ORT源码编译过程的细节。
onnxruntime源码学习-编译与调试 (公网&内网)
在深入学习ONNX Runtime的过程中,我决定从1.版本开始,以对比与理解多卡并行技术。为此,我选择了通过`./tools/ci_build/build.py`脚本进行编译,而不是直接执行`build.sh`,因为后者并不直接提供所需的参数。在`build.py:::parse_arguments()`函数中,我找到了可选择的参数,例如运行硬件(CPU/GPU)、调试模式(Debug/Release)以及是否并行编译。我特别使用了`--skip_submodule_sync`,以避免因与公网不通而手动下载“submodule”,即`./cmake/external`文件夹下的依赖组件。这样可以节省每次编译时检查依赖组件更新的时间,提高编译效率。同时,我使用`which nvcc`命令来确定`cuda_home`和`cudnn_home`的值。
我的编译环境配置为gcc8.5.0、cuda.7和cmake3..1,其中cmake版本需要不低于3.,gcc版本则至少为7.0,否则编译过程中会出现错误。在编译环境的配置中,可以通过设置PATH和LD_LIBRARY_PATH来指定可执行程序和动态库的路径。对于手动下载“submodule”的不便,可以通过先在公网编译cpu版本,然后在编译开始阶段由构建脚本自动下载所有依赖组件并拷贝至所需目录来简化流程。
编译顺利完成后,生成的so文件并未自动放入bin目录,这可能是由于在安装步骤后bin目录下才会出现相应的文件。接下来,我进入了调试阶段,使用vscode进行调试,最终成功运行了`build/RelWithDebInfo/onnxruntime_shared_lib_test`可执行文件。
在深入研究ONNX Runtime的编译流程时,我发现了一个更深入的资源,它涵盖了从`build.sh`到`build.py`再到`CmakeList.txt`的编译过程,以及上述流程中涉及的脚本解析。对这个流程感兴趣的读者可以进行更深入的研究。
在编译过程中,我遇到了一些问题,如下载cudnn并进行安装,以及解决找不到`stdlib.h`的问题。对于找不到`stdlib.h`,我通过查阅相关文章和理解编译过程中搜索路径的逻辑,最终找到了解决方案。如果忽略这个问题,我选择在另一台机器上重新编译以解决问题。
在使用vscode调试时,我遇到了崩溃问题,这可能是由于vscode、gdb或Debug模式编译出的可执行文件存在潜在问题。通过逐步排除,我最终确定问题可能出在Debug模式编译的可执行文件上。这一系列的探索和解决过程,不仅加深了我对ONNX Runtime的理解,也提高了我的调试和问题解决能力。