皮皮网

【staticjs源码】【收费许愿墙源码】【psd字体头像源码】pytorch源码教学

来源:注册界面源码下载 时间:2025-01-18 18:07:15

1.PyTorch源码学习系列 - 2. Tensor
2.PyTorch ResNet 使用与源码解析
3.pytorch 源码解读进阶版 - 当你 import torch 的码教时候,你都干了些什么?(施工中)
4.pytorch源码学习03 nn.Module 提纲挈领
5.[技术随笔]🛠🛠从源码安装Pytorch3D详细记录及学习资料
6.PyTorch源码学习 - (13)模型的码教保存与加载

pytorch源码教学

PyTorch源码学习系列 - 2. Tensor

       本系列文章同步发布于微信公众号小飞怪兽屋及知乎专栏PyTorch源码学习-知乎(zhihu.com),欢迎关注。码教

       若问初学者接触PyTorch应从何学起,码教答案非神经网络(NN)或自动求导系统(Autograd)莫属,码教而是码教staticjs源码看似平凡却无所不在的张量(Tensor)。正如编程初学者在控制台输出“Hello World”一样,码教Tensor是码教PyTorch的“Hello World”,每个初学者接触PyTorch时,码教都通过torch.tensor函数创建自己的码教Tensor。

       编写上述代码时,码教我们已步入PyTorch的码教宏观世界,利用其函数创建Tensor对象。码教然而,码教Tensor是码教如何创建、存储、设计的?今天,让我们深入探究Tensor的微观世界。

       Tensor是什么?从数学角度看,Tensor本质上是多维向量。在数学里,数称为标量,一维数据称为向量,二维数据称为矩阵,三维及以上数据统称为张量。维度是衡量事物的方式,例如时间是一种维度,销售额相对于时间的关系可视为一维Tensor。Tensor用于表示多维数据,在不同场景下具有不同的物理含义。

       如何存储Tensor?在计算机中,程序代码、数据和生成数据都需要加载到内存。存储Tensor的物理媒介是内存(GPU上是显存),内存是一块可供寻址的存储单元。设计Tensor存储方案时,需要先了解其特性,如数组。创建数组时,会向内存申请一块指定大小的连续存储空间,这正是PyTorch中Strided Tensor的存储方式。

       PyTorch引入了步伐(Stride)的概念,表示逻辑索引的相对距离。例如,一个二维矩阵的Stride是一个大小为2的一维向量。Stride用于快速计算元素的收费许愿墙源码物理地址,类似于C/C++中的多级指针寻址方式。Tensor支持Python切片操作,因此PyTorch引入视图概念,使所有Tensor视图共享同一内存空间,提高程序运行效率并减少内存空间浪费。

       PyTorch将Tensor的物理存储抽象成一个Storage类,与逻辑表示类Tensor解耦,建立Tensor视图和物理存储Storage之间多对一的联系。Storage是声明类,具体实现在实现类StorageImpl中。StorageImp有两个核心成员:Storage和StorageImpl。

       PyTorch的Tensor不仅用Storage类管理物理存储,还在Tensor中定义了很多相关元信息,如size、stride和dtype,这些信息都存在TensorImpl类中的sizes_and_strides_和data_type_中。key_set_保存PyTorch对Tensor的layout、device和dtype相关的调度信息。

       PyTorch创建了一个TensorBody.h的模板文件,在该文件中创建了一个继承基类TensorBase的类Tensor。TensorBase基类封装了所有与Tensor存储相关的细节。在类Tensor中,PyTorch使用代码自动生成工具将aten/src/ATen/native/native_functions.yaml中声明的函数替换此处的宏${ tensor_method_declarations}

       Python中的Tensor继承于基类_TensorBase,该类是用Python C API绑定的一个C++类。THPVariable_initModule函数除了声明一个_TensorBase Python类之外,还通过torch::autograd::initTorchFunctions(module)函数声明Python Tensor相关的函数。

       torch.Tensor会调用C++的THPVariable_tensor函数,该函数在文件torch/csrc/autograd/python_torch_functions_manual.cpp中。在经过一系列参数检测之后,在函数结束之前调用了torch::utils::tensor_ctor函数。

       torch::utils::tensor_ctor在文件torch/csrc/utils/tensor_new.cpp中,该文件包含了创建Tensor的一些工具函数。在该函数中调用了internal_new_from_data函数创建Tensor。

       recursive_store函数的核心在于

       Tensor创建后,我们需要通过函数或方法对其进行操作。Tensor的方法主要通过torch::autograd::variable_methods和extra_methods两个对象初始化。Tensor的函数则是通过initTorchFunctions初始化,调用gatherTorchFunctions来初始化函数,主要分为两种函数:内置函数和自定义函数。

PyTorch ResNet 使用与源码解析

       在PyTorch中,我们可以通过torchvision.model库轻松使用预训练的图像分类模型,如ResNet。本文将重点讲解ResNet的使用和源码解析。

       模型介绍与ResNet应用

       torchvision.model库提供了多种预训练模型,包括ResNet,psd字体头像源码其特点是层深度的残差网络。首先,我们需要加载预训练的模型参数:

       模型加载代码:

       python

       model = torchvision.models.resnet(pretrained=True)

       接着,将模型放置到GPU上,并设置为评估模式:

       GPU和评估模式设置:

       python

       model = model.to(device='cuda')

       model.eval()

       Inference流程

       在进行预测时,主要步骤包括数据预处理和网络前向传播:

       关键代码:

       python

       with torch.no_grad():

        output = model(input_data)

       残差连接详解

       ResNet的核心是残差块,包含两个路径:一个是拟合残差的路径(称为残差路径),另一个是恒等映射(称为shortcut)。通过element-wise addition将两者连接:

       残差块结构:

       1. 残差路径: [公式]

       2. 短路路径: [公式] (通常为identity mapping)

       网络结构与变种

       ResNet有不同深度的变种,如ResNet、ResNet、ResNet等,网络结构根据层数和块的数量有所不同:

       不同ResNet的结构图:

       ...

       源码分析

       构造函数中,例如ResNet的构造过程是通过_resnet()方法逐步构建网络,涉及BasicBlock或Bottleneck的使用:

       ResNet构造函数:

       ...

       源码的深入解析包括forward()方法的执行流程,以及_make_layer()方法定义网络层:

       forward()方法和_make_layer()方法:

       ...

       图解示例

       ResNet和ResNet的不同层结构,如layer1的升维与shortcut处理:

       ResNet和ResNet的图解:

       ...

       希望这些内容对理解ResNet在PyTorch中的应用有所帮助。如果你从中受益,别忘了分享或支持作者继续创作。

pytorch 源码解读进阶版 - 当你 import torch 的时候,你都干了些什么?(施工中)

       使用PyTorch,无论是训练还是预测,你首先编写的代码通常如下所示:

       依据Python代码的编写规则,导入逻辑将去相应的PyTorch site-package目录寻找__init__.py文件,具体路径为:${ python_path}/lib/python3.8/site-packages/torch/__init__.py

       本章节聚焦于__init__.py 这个Python文件,从这里开始深入剖析,探究在一行简单的`import torch`命令背后,PyTorch是如何完成关键基础设置的初始化。

       重点一:从`from torch._C import *`开始

       在__init__.py 中,首先跳过一些系统环境的检查和判断逻辑,核心代码段为`from torch._C import *`,具体位置如下(github.com/pytorch/pytorch...):

       这代表了典型的C++共享库初始化过程,遵循CPython代码组织规则,`torch._C`模块对应一个名为PyInit__C的函数。在文件torch/csrc/stub.c中,找到了此函数的相关定义(github.com/pytorch/pytorch...)。

       initModule被视为PyTorch初始化过程中的第一层调用栈,深入探讨此函数中的关键内容。

pytorch源码学习 nn.Module 提纲挈领

       深入理解 PyTorch 的 nn.Module:核心概念与底层逻辑

       掌握核心思想,探索底层逻辑,通过解析 PyTorch 的 nn.Module 来构建深度学习模型。此模块是 PyTorch 的基石,封装了一系列函数和操作,构成计算图,是ios系统源码泄漏构建神经网络的首选工具。

       nn.Module 初始化(__init__)

       在定义自定义模块时,__init__ 方法是关键。通过调用 super().setattr 方法,设置 nn.Module 的核心成员变量,如训练状态、参数、缓存等,这决定了模块的主要功能。这些设置包括:

       控制训练/测试状态

       初始化参数集合

       初始化缓存集合

       设置非持久缓存集

       注册前向和反向钩子

       初始化子模块集合

       理解这些设置对于高效初始化模块至关重要,避免了默认属性设置的冗余和潜在的性能影响。

       训练与测试模式(train/val)

       nn.Module 通过 self.training 属性区分训练和测试模式,影响模块在不同状态下的行为。使用 model.train() 和 model.eval() 设置,可使模块在训练或测试时表现不同,如控制 Batch Normalization 和 Dropout 的行为。

       梯度管理

       requires_grad_ 和 zero_grad 函数管理梯度,用于训练和微调模型。requires_grad_ 控制参数是否参与梯度计算,zero_grad 清理梯度,释放内存。正确设置这些函数是训练模型的关键。

       参数转换与转移

       通过调用 nn.Module 提供的函数,如 CPU、type、CUDA 等,可以轻松转换模型参数和缓存到不同数据类型和设备上。这些函数通过 self._apply 实现,确保所有模块和子模块的参数和缓存得到统一处理。

       属性增删改查

       模块属性管理通过 add_module、register_parameter 和 register_buffer 等方法实现。这些方法不仅设置属性,还管理属性的生命周期和可见性。直接设置属性会触发 nn.Module 的 __setattr__ 方法。

       常见属性访问

       nn.Module 提供了方便的访问器,如 parameters、buffers、children 和 modules,用于遍历模块中的参数、缓存、子模块等。这些访问器通过迭代器简化了对模块属性的访问。

       前向过程与钩子

       nn.Module 中的前向过程与钩子管理了模块的执行顺序。forward_pre_hooks、forward_hooks 和 backward_hooks 用于在模块的前向和后向计算阶段触发特定操作,实现如内存管理、apk源码如何查看中间结果保存等高级功能。

       模型加载与保存

       模型的保存与加载通过 hook 机制实现,确保在不同版本间兼容。使用 state_dict() 和 load_state_dict() 函数实现模型状态的导出和导入,支持模块及其子模块参数的保存与恢复。

       通过深入理解 nn.Module 的设计与实现,可以更高效地构建、优化和管理深度学习模型,实现从概念到应用的无缝过渡。

[技术随笔]🛠🛠从源码安装Pytorch3D详细记录及学习资料

       这篇文章详细介绍了如何从源码安装Pytorch3D,包括选择合适的镜像、配置工具和编译步骤。首先,选择Pytorch 1.9的devel镜像,包含CUDA和驱动,确保与Pytorch3D的版本要求相匹配,比如Python 3.7和CUDA .2。在镜像内,需要检查nvcc编译器、CUDA工具箱和驱动是否正常,同时安装基本工具如git、vim、sudo和curl。

       配置CUB工具是关键步骤,根据Pytorch3D文档,需要在编译前设置CUB_HOME。即使Pytorch镜像自带CUDA,也建议手动设置`FORCE_CUDA`为1以确保兼容。接着,如果遇到conda依赖问题,作者选择从源码编译Pytorch3D,编译过程中的安装log和版本检查是必要的。

       最后,通过测试用例,如从ARkit导出数据并渲染白模,验证GPU的使用。结果显示GPU正常工作,安装成功。对于更深入的Pytorch3D使用,作者还分享了一些参考资源,以便初学者入门。

PyTorch源码学习 - ()模型的保存与加载

       在PyTorch源码中,模型的保存与加载是通过`torch.save`和`torch.load`两个核心函数实现的。`torch.save`负责将一个Python对象持久化到磁盘文件,而`torch.load`则用于从磁盘文件中恢复对象。

       在具体的实现中,`torch.save`会使用一系列辅助函数如`torch._opener`,`torch._open_zipfile_writer`,`torch._open_zipfile_writer_file`,`torch._open_zipfile_writer_buffer`等来操作文件和流。根据文件或内存缓冲区创建流容器,进行对象的保存。`torch._save`则进一步封装了文件的打开和写入过程,`torch._open_file_like`和`torch._open_file`用于管理文件句柄,`torch._open_buffer_writer`和`torch._open_buffer_reader`则封装了二进制流的读写。

       对于模型加载,`torch.load`函数通过`torch._open_zipfile_reader`和`torch._weights_only_unpickler`实现。`torch._weights_only_unpickler`是定制的反序列化器,限制了处理的数据类型,确保安全加载模型权重。`torch._get_restore_location`和`torch.default_restore_location`则用于获取和设置恢复位置,以支持在多设备或分布式环境下的模型加载。

       实现中,Python和C++的结合是关键,PyTorch使用`PyBind`实现C++和Python接口的绑定。`torch/_C/ __init__.pyi`用于定义Python中类型信息的模板,`torch/csrc/jit/python/init.cpp`则用于实现JIT(Just-In-Time)编译系统,将C++类对象绑定到Python环境,实现高效的动态编译。

       在PyTorch中,Python主要负责管理C++对象,核心工作包括管理C++对象的生命周期、调用C++方法,以及处理Python层面的逻辑和接口定义。通过这样的结合,PyTorch实现了高性能和易用性的统一,为深度学习模型的开发和应用提供了强大支持。

       整体来看,PyTorch的模型保存与加载机制通过精细的文件操作和对象管理,以及Python与C++的高效结合,确保了模型的高效持久化与灵活加载,为深度学习模型的开发与部署提供了坚实的底层支持。

PyTorch 源码分析(三):torch.nn.Norm类算子

       PyTorch源码详解(三):torch.nn.Norm类算子深入解析

       Norm类算子在PyTorch中扮演着关键角色,它们包括BN(BatchNorm)、LayerNorm和InstanceNorm。

       1. BN/LayerNorm/InstanceNorm详解

       BatchNorm(BN)的核心功能是对每个通道(C通道)的数据进行标准化,确保数据在每个批次后保持一致的尺度。它通过学习得到的gamma和beta参数进行缩放和平移,保持输入和输出形状一致,同时让数据分布更加稳定。

       gamma和beta作为动态调整权重的参数,它们在BN的学习过程中起到至关重要的作用。

       2. Norm算子源码分析

       继承关系:Norm类在PyTorch中具有清晰的继承结构,子类如BatchNorm和InstanceNorm分别继承了其特有的功能。

       BN与InstanceNorm实现:在Python代码中,BatchNorm和InstanceNorm的实例化和计算逻辑都包含对输入数据的2D转换,即将其分割为M*N的矩阵。

       计算过程:在计算过程中,首先计算每个通道的均值和方差,这是这些标准化方法的基础步骤。

       C++侧的源码洞察

       C++实现中,对于BatchNorm和LayerNorm,代码着重于处理数据的标准化操作,同时确保线程安全,通过高效的数据视图和线程视图处理来提高性能。

PyTorch 源码解读之 torch.utils.data:解析数据处理全流程

       文@

       目录

       0 前言

       1 Dataset

       1.1 Map-style dataset

       1.2 Iterable-style dataset

       1.3 其他 dataset

       2 Sampler

       3 DataLoader

       3.1 三者关系 (Dataset, Sampler, Dataloader)

       3.2 批处理

       3.2.1 自动批处理(默认)

       3.2.2 关闭自动批处理

       3.2.3 collate_fn

       3.3 多进程处理 (multi-process)

       4 单进程

       5 多进程

       6 锁页内存 (Memory Pinning)

       7 预取 (prefetch)

       8 代码讲解

       0 前言

       本文以 PyTorch 1.7 版本为例,解析 torch.utils.data 模块在数据处理流程中的应用。

       理解 Python 中的迭代器是解读 PyTorch 数据处理逻辑的关键。Dataset、Sampler 和 DataLoader 三者共同构建数据处理流程。

       迭代器通过实现 __iter__() 和 __next__() 方法,支持数据的循环访问。Dataset 提供数据获取接口,Sampler 控制遍历顺序,DataLoader 负责加载和批处理数据。

       1 Dataset

       Dataset 包括 Map-style 和 Iterable-style 两种,分别用于索引访问和迭代访问数据。

       Map-style dataset 通过实现 __getitem__() 和 __len__() 方法,支持通过索引获取数据。

       Iterable-style dataset 实现 __iter__() 方法,适用于随机访问且批次大小依赖于获取数据的场景。

       2 Sampler

       Sampler 用于定义数据遍历的顺序,支持用户自定义和 PyTorch 提供的内置实现。

       3 DataLoader

       DataLoader 是数据加载的核心,支持 Map-style 和 Iterable-style Dataset,提供单多进程处理和批处理等功能。

       通过参数配置,如 batch_size、drop_last、collate_fn 等,DataLoader 实现了数据的自动和手动批处理。

       4 批处理

       3.2.1 自动批处理(默认)

       DataLoader 默认使用自动批处理,通过参数控制批次生成和样本整理。

       3.2.2 关闭自动批处理

       关闭自动批处理,允许用户自定义批处理逻辑或处理单个样本。

       3.2.3 collate_fn

       collate_fn 是手动批处理时的关键,用于整理单个样本为批次。

       5 多进程

       多进程处理通过 num_workers 参数启用,加速数据加载。

       6 单进程

       单进程模式下,数据加载可能影响计算流程,适用于数据量小且无需多进程的场景。

       7 锁页内存 (Memory Pinning)

       Memory Pinning 技术确保数据在 GPU 加速过程中快速传输,提高性能。

       8 代码讲解

       通过具体代码分析,展示了 DataLoader 的初始化、迭代和数据获取过程,涉及迭代器、Sampler 和 Dataset 的交互。

PyTorch - DataLoader 源码解析(一)

       本文为作者基于个人经验进行的初步解析,由于能力有限,可能存在遗漏或错误,敬请各位批评指正。

       本文并未全面解析 DataLoader 的全部源码,仅对 DataLoader 与 Sampler 之间的联系进行了分析。以下内容均基于单线程迭代器代码展开,多线程情况将在后续文章中阐述。

       以一个简单的数据集遍历代码为例,在循环中,数据是如何从 loader 中被取出的?通过断点调试,我们发现循环时,代码进入了 torch.utils.data.DataLoader 类的 __iter__() 方法,具体内容如下:

       可以看到,该函数返回了一个迭代器,主要由 self._get_iterator() 和 self._iterator._reset(self) 提供。接下来,我们进入 self._get_iterator() 方法查看迭代器的产生过程。

       在此方法中,根据 self.num_workers 的数量返回了不同的迭代器,主要区别在于多线程处理方式不同,但这两种迭代器都是继承自 _BaseDataLoaderIter 类。这里我们先看单线程下的例子,进入 _SingleProcessDataLoaderIter(self)。

       构造函数并不复杂,在父类的构造器中执行了大量初始化属性,然后在自己的构造器中获得了一个 self._dataset_fetcher。此时继续单步前进断点,发现程序进入到了父类的 __next__() 方法中。

       在分析代码之前,我们先整理一下目前得到的信息:

       下面是 __next__() 方法的内容:

       可以看到最后返回的是变量 data,而 data 是由 self._next_data() 生成的,进入这个方法,我们发现这个方法由子类负责实现。

       在这个方法中,我们可以看到数据从 self._dataset_fecther.fetch() 中得到,需要依赖参数 index,而这个 index 由 self._next_index() 提供。进入这个方法可以发现它是由父类实现的。

       而前面的 index 实际上是由这个 self._sampler_iter 迭代器提供的。查找 self._sampler_iter 的定义,我们发现其在构造函数中。

       仔细观察,我们可以在倒数第 4 行发现 self._sampler_iter = iter(self._index_sampler),这个迭代器就是这里的 self._index_sampler 提供的,而 self._index_sampler 来自 loader._index_sampler。这个 loader 就是最外层的 DataLoader。因此我们回到 DataLoader 类中查看这个 _index_sampler 是如何得到的。

       我们可以发现 _index_sampler 是一个由 @property 装饰得到的属性,会根据 self._auto_collation 来返回 self.batch_sampler 或者 self.sampler。再次整理已知信息,我们可以得到:

       因此,只要知道 batch_sampler 和 sampler 如何返回 index,就能了解整个流程。

       首先发现这两个属性来自 DataLoader 的构造函数,因此下面先分析构造函数。

       由于构造函数代码量较大,因此这里只关注与 Sampler 相关的部分,代码如下:

       在这里我们只关注以下部分:

       代码首先检查了参数的合法性,然后进行了一轮初始化属性,接着判断了 dataset 的类型,处理完特殊情况。接下来,函数对参数冲突进行了判断,共判断了 3 种参数冲突:

       检查完参数冲突后,函数开始创建 sampler 和 batch_sampler,如下图所示:

       注意,仅当未指定 sampler 时才会创建 sampler;同理,仅在未指定 batch_sampler 且存在 batch_size 时才会创建 batch_sampler。

       在 DataLoader 的构造函数中,如果不指定参数 batch_sampler,则默认创建 BatchSampler 对象。该对象需要一个 Sampler 对象作为参数参与构造。这也是在构造函数中,batch_sampler 与 sampler 冲突的原因之一。因为传入一个 batch_sampler 时,说明 sampler 已经作为参数完成了 batch_sampler 的构造,若再将 sampler 传入 DataLoader 是多余的。

       以第一节中的简单代码为例,此时并未指定 Sampler 和 batch_sampler,也未指定 batch_size,默认为 1,因此在 DataLoader 构造时,创建了一个 SequencialSampler,并传入了 BatchSampler 进行构建。继续第一节中的断点,可以发现:

       具体使用 sampler 还是 batch_sampler 来生成 index,取决于 _auto_collation,而从上面的代码发现,只要存在 self.batch_sampler 就永远使用 batch_sampler 来生成。batch_sampler 与 sampler 冲突的原因之二:若不设置冲突,那么使用者试图同时指定 batch_sampler 与 sampler 后,尤其是在使用者继承了新的 Sampler 子类后, sampler 在获取数据的时候完全没有被使用,这对开发者来说是一个困惑的现象,容易引起不易察觉的 BUG。

       继续断点发现程序进入了 BatchSampler 的 __iter__() 方法,代码如下:

       从代码中可以发现,程序不停地从 self.sampler 中获取 idx 加入列表,直到填满一个 batch 的量,并将这一整个 batch 的 index 返回到迭代器的 _next_data()。

       此处由 self._dataset_fetcher.fetch(index) 来获取真正的数据,进入函数后看到:

       这里依然根据 self.auto_collation(来自 DataLoader._auto_collation)进行分别处理,但是总体逻辑都是通过 self.dataset[] 来调用 Dataset 对象的 __getitem__() 方法。

       此处的 Dataset 是来自 torchvision 的 DatasetFolder 对象,这里读取文件路径中的后,经过转换变为 Tensor 对象,与标签 target 一起返回。参数中的 index 是由迭代器的 self._dataset_fetcher.fetch() 传入。

       整个获取数据的流程可以用以下流程图简略表示:

       注意:

       另附:

       对于一条循环语句,在执行过程中发生了以下事件: