皮皮网

【支撑画线源码】【ttf 解析 源码】【LINUX sz源码】linux内核启动源码_linux内核启动源码分析

2025-01-19 02:53:00 来源:房产门户系统源码

1.Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理
2.linux内核源码目录在哪linux内核源码
3.linux内核怎么进入写代码的内内核界面
4.Linux 内核启动流程
5.Linux内核源码解析---cgroup实现之整体架构与初始化
6.从Linux内核源码的角度深入解释进程(图例解析)

linux内核启动源码_linux内核启动源码分析

Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理

       引子

       在如今的大型服务器中,NUMA架构扮演着关键角色。核启它允许系统拥有多个物理CPU,动源不同NUMA节点之间通过QPI通信。启动虽然硬件连接细节在此不作深入讨论,源码但需明白每个CPU优先访问本节点内存,分析支撑画线源码当本地内存不足时,内内核可向其他节点申请。核启从传统的动源SMP架构转向NUMA架构,主要是启动为了解决随着CPU数量增多而带来的总线压力问题。

       分配物理内存时,源码numa_node_id() 方法用于查询当前CPU所在的分析NUMA节点。频繁的内内核内存申请操作促使Linux内核采用per-cpu实现,将CPU访问的核启变量复制到每个CPU中,以减少缓存行竞争和False Sharing,动源类似于Java中的Thread Local。

       分配物理页

       尽管我们不必关注底层实现,buddy system负责分配物理页,关键在于使用了numa_node_id方法。接下来,我们将深入探索整个Linux内核的per-cpu体系。

       numa_node_id源码分析获取数据

       在topology.h中,我们发现使用了raw_cpu_read函数,传入了numa_node参数。接下来,我们来了解numa_node的定义。

       在topology.h中定义了numa_node。我们继续跟踪DECLARE_PER_CPU_SECTION的ttf 解析 源码定义,最终揭示numa_node是一个共享全局变量,类型为int,存储在.data..percpu段中。

       在percpu-defs.h中,numa_node被放置在ELF文件的.data..percpu段中,这些段在运行阶段即为段。接下来,我们返回raw_cpu_read方法。

       在percpu-defs.h中,我们继续跟进__pcpu_size_call_return方法,此方法根据per-cpu变量的大小生成回调函数。对于numa_node的int类型,最终拼接得到的是raw_cpu_read_4方法。

       在percpu.h中,调用了一般的read方法。在percpu.h中,获取numa_node的绝对地址,并通过raw_cpu_ptr方法。

       在percpu-defs.h中,我们略过验证指针的环节,追踪arch_raw_cpu_ptr方法。接下来,我们来看x架构的实现。

       在percpu.h中,使用汇编获取this_cpu_off的地址,代表此CPU内存副本到".data..percpu"的偏移量。加上numa_node相对于原始内存副本的LINUX sz源码偏移量,最终通过解引用获得真正内存地址内的值。

       对于其他架构,实现方式相似,通过获取自己CPU的偏移量,最终通过相对偏移得到pcp变量的地址。

       放入数据

       讨论Linux内核启动过程时,我们不得不关注per-cpu的值是如何被放入的。

       在main.c中,我们以x实现为例进行分析。通过setup_percpu.c文件中的代码,我们将node值赋给每个CPU的numa_node地址处。具体计算方法通过early_cpu_to_node实现,此处不作展开。

       在percpu-defs.h中,我们来看看如何获取每个CPU的numa_node地址,最终还是通过简单的偏移获取。需要注意如何获取每个CPU的副本偏移地址。

       在percpu.h中,我们发现一个关键数组__per_cpu_offset,其中保存了每个CPU副本的偏移值,通过CPU的索引来查找。

       接下来,我们来设计PER CPU模块。

       设计一个全面的PER CPU架构,它支持UMA或NUMA架构。我们设计了一个包含NUMA节点的结构体,内部管理所有CPU。netty 4.023 源码为每个CPU创建副本,其中存储所有per-cpu变量。静态数据在编译时放入原始数据段,动态数据在运行时生成。

       最后,我们回到setup_per_cpu_areas方法的分析。在setup_percpu.c中,我们详细探讨了关键方法pcpu_embed_first_chunk。此方法管理group、unit、静态、保留、动态区域。

       通过percpu.c中的关键变量__per_cpu_load和vmlinux.lds.S的链接脚本,我们了解了per-cpu加载时的地址符号。PERCPU_INPUT宏定义了静态原始数据的起始和结束符号。

       接下来,我们关注如何分配per-cpu元数据信息pcpu_alloc_info。percpu.c中的方法执行后,元数据分配如下图所示。

       接着,我们分析pcpu_alloc_alloc_info的方法,完成元数据分配。

       在pcpu_setup_first_chunk方法中,我们看到分配的smap和dmap在后期将通过slab再次分配。

       在main.c的mm_init中,我们关注重点区域,lua ffi 源码完成map数组的slab分配。

       至此,我们探讨了Linux内核中per-cpu实现的原理,从设计到源码分析,全面展现了这一关键机制在现代服务器架构中的作用。

linux内核源码目录在哪linux内核源码

       如何查看linux内核源代码?

       一般在Linux系统中的/usr/src/linux*.*.*(*.*.*代表的是内核版本,如2.4.)目录下就是内核源代码(如果没有类似目录,是因为还没安装内核代码)。另外还可从互连网上免费下载。注意,不要总到mon.S文件中定义,随后调用start_kernel,这个函数在init/main.c中执行,负责启动前的初始化工作。

       start_kernel通过一系列子函数进行初始化,最后调用rest_init,目的是启动init进程。系统中,init进程的PID为1,而内核进程如idle进程不在用户界面显示。启动流程中,内核挂载根文件系统并执行init程序,从而进入用户态。

       在内核启动完成后,_init作为第一个用户空间程序被调用,它启动其他进程以使系统进入可操作状态。整个启动流程涉及到多个关键函数和环节,理解这些对于深入研究Linux内核至关重要。

Linux内核源码解析---cgroup实现之整体架构与初始化

       cgroup在年由Google工程师开发,于年被融入Linux 2.6.内核。它旨在管理不同进程组,监控一组进程的行为和资源分配,是Docker和Kubernetes的基石,同时也被高版本内核中的LXC技术所使用。本文基于最早融入内核中的代码进行深入分析。

       理解cgroup的核心,首先需要掌握其内部的常用术语,如子系统、层级、cgroupfs_root、cgroup、css_set、cgroup_subsys_state、cg_cgroup_link等。子系统负责控制不同进程的行为,例如CPU子系统可以控制一组进程在CPU上执行的时间占比。层级在内核中表示为cgroupfs_root,一个层级控制一批进程,层级内部绑定一个或多个子系统,每个进程只能在一个层级中存在,但一个进程可以被多个层级管理。cgroup以树形结构组织,每一棵树对应一个层级,层级内部可以关联一个或多个子系统。

       每个层级内部包含的节点代表一个cgroup,进程结构体内部包含一个css_set,用于找到控制该进程的所有cgroup,多个进程可以共用一个css_set。cgroup_subsys_state用于保存一系列子系统,数组中的每一个元素都是cgroup_subsys_state。cg_cgroup_link收集不同层级的cgroup和css_set,通过该结构可以找到与之关联的进程。

       了解了这些概念后,可以进一步探索cgroup内部用于结构转换的函数,如task_subsys_state、find_existing_css_set等,这些函数帮助理解cgroup的内部运作。此外,cgroup_init_early和cgroup_init函数是初始化cgroup的关键步骤,它们负责初始化rootnode和子系统的数组,为cgroup的使用做准备。

       最后,需要明确Linux内一切皆文件,cgroup基于VFS实现。内核启动时进行初始化,以确保系统能够正确管理进程资源。cgroup的初始化过程分为早期初始化和常规初始化,其中早期初始化用于准备cpuset和CPU子系统,确保它们在系统运行时能够正常工作。通过这些步骤,我们可以深入理解cgroup如何在Linux内核中实现资源管理和进程控制。

从Linux内核源码的角度深入解释进程(图例解析)

       进程,作为操作系统的基本概念,是程序执行过程的体现,自计算机诞生以来,其工作原理沿用冯诺依曼架构。从代码编译生成的可执行文件在特定环境中加载到内存,便构成了一个执行中的进程。进程的生命周期涉及启动、状态转换、执行和退出等阶段。在Linux中,进程的创建始于fork调用,通过复制当前进程生成新进程,接着通过exec初始化新进程地址空间,进入就绪状态等待调度。

       进程在操作系统中被抽象为task_struct,这个庞大的结构体,即进程描述符,记录了进程的全部属性和操作,包括进程ID(pid)和状态。查看进程ID和父进程ID可以通过特定命令。状态字段通过long类型表示,其他细节可以通过源码深入探究。

       创建进程涉及fork和copy_process函数,fork仅复制轻量级信息,使用写时复制技术避免数据冲突。fork后的子进程在必要时通过exec开始独立执行。在Linux中,线程和进程本质上是相同的,区别在于资源的共享程度。

       进程调度采用抢占式策略,如CFS(完全公平调度)通过虚拟运行时来实现公平调度,通过时间记账和红黑树组织队列来高效选择进程。进程退出时,会清理资源并可能转化为孤儿进程,由特定进程接管。理解这些原理有助于深入理解Linux内核对进程的管理机制。

一文了解Linux内核启动流程

       本文以Linux3.版本源码为例分析其启动流程。不同版本的启动代码虽然存在差异,但核心的启动逻辑与理念保持不变。

       内核映像在内存中加载并获取控制权后,启动流程启动。由于内核映像是以压缩形式存储的,而非可执行文件,因此首要步骤是自解压内核映像。

       内核在编译时生成vmliunx,通常会被压缩成zImage(小于KB的小内核)或bzImage(大于KB的大内核)。这些内核映像的头部包含解压缩程序。

       通过查找vmlinux文件的链接脚本(vmlinux.lds)中的系统启动入口函数,通常在linux/arch/arm/boot/compressed目录下的Makefile中找到这一信息。

       得到的内核入口函数为stext(linux/arch/arm/kernel/head.S),这是启动流程的关键环节。

       内核启动阶段,通过查找标签__mmap_switched的位置(/linux/arch/arm/kernel/head-common.S),实现内存映射的切换。

       从start_kernel函数开始,内核进入C语言部分,执行内核的大部分初始化任务。函数位于/lint/init/Main.c。

       start_kernel函数涵盖了大量初始化工作,其中包括系统调用、内存管理、进程调度、设备驱动等核心模块的初始化。最终,函数调用rest_init()函数完成剩余初始化。

       kernel_init函数负责设备驱动程序的初始化,并调用init_post函数启动用户进程。现代版本的内核已经将init_post函数的特定任务整合到kernel_init中。

       在内核初始化接近尾声时,free_initmem函数清除内存的__init_begin至__init_end区间数据。

       内核启动后,运行自己的第一个用户空间应用程序_init,它是使用标准C库编译的第一个程序,进程ID为1。

       _init执行其他必需的进程启动,以使系统进入全面可用的状态。

       以下是内核启动流程图,以直观展示启动过程的关键步骤和顺序。