【aaa源码搭建】【懒人oa源码】【图册系统源码】读写锁源码_读写锁源码分析

时间:2025-01-18 14:52:50 编辑:简单jsp网页源码 来源:竹筒游戏棋牌源码

1.Linux读写锁逻辑解析
2.读写锁ReadWriteLock的读写实现原理
3.33张图解析ReentrantReadWriteLock源码
4.RocketMQ—NameServer总结及核心源码剖析
5.AQS与ReentrantLock详解
6.Java并发编程解析 | 基于JDK源码解析Java领域中并发锁之StampedLock锁的设计思想与实现原理 (三)

读写锁源码_读写锁源码分析

Linux读写锁逻辑解析

       Linux的读写锁机制,如同一把精密的锁源多线程调和器,巧妙解决并发世界中的码读读多写少困境。其核心数据结构,写锁如rwsem(读写信号量),源码包含读写状态counter和任务管理信息,分析aaa源码搭建确保了读线程的读写并发性和写线程的互斥性。

       在内核设计中,锁源当写线程尝试获取写锁时,码读可能会采取乐观自旋策略,写锁若失败则会优雅地加入等待队列。源码rw_semaphore结构体中的分析关键成员,如task指针和队列,读写负责管理这些等待任务。锁源对外API如down_read_trylock,码读为高效读取提供了可能,即使尝试失败也不会造成阻塞。

       读锁获取过程复杂而微妙,通过RWSEM_READER_BIAS快速路径和防止饿死的慢速路径,遵循公平原则。乐观偷锁机制允许临界区无写者时,高优先级读者尝试先入。若偷窃失败,读者会进入等待队列,队列超时机制确保效率与公平的平衡。

       当读线程加入等待队列,任务会被细致地处理,通过rwsem_add_waiter调整counter。特别是对于首位等待者,会设置RWSEM_FLAG_WAITERS标志。在尝试获取锁前,可能需要唤醒潜在的等待者,如owner离开或读锁持有者。释放读锁时,仅简单地减去counter,不移除owner,以减少复杂性。

       写锁的获取则更为严谨,rwsem_write_trylock会检查rwsem状态,成功则立即持有并标记,否则返回。写锁的获取过程涉及等待队列的操作和唤醒策略,保证了高优先级的请求能及时响应。

       在写锁持有者释放时,与读锁类似,仅清理owner,同时考虑writer可能对reader的抢锁影响。乐观自旋条件的懒人oa源码判断,确保了在特定场景下的高效执行,如writer持有锁且未禁止自旋。

       OPPO内核团队在实际应用中,如手机交互场景,对Linux读写锁进行了优化,以降低延迟和提高吞吐量。深入研究5..内核源代码中的"Documentation\locking\"部分,你会发现更多优化细节。对于对技术感兴趣的读者,"内核工匠"公众号提供了丰富的技术内容。

       Linux的读写锁设计,如同一个精密的调和大师,它在并发世界中奏出了平衡、效率与公平的交响乐,无论在理论层面还是实际应用中,都展现出强大的适应性和灵活性,是多线程并发编程的有力工具。

读写锁ReadWriteLock的实现原理

       理解读写锁的实现原理,首先明确几个关键概念。读写锁,顾名思义,可以同时支持读操作和写操作。读操作可以并行,而写操作则具有独占性。读写锁内部使用一个状态变量(如state)来表示锁的当前状态。

       读写锁提供了几个核心方法:getReadLockCount()、getReadHoldCount()、getWriteHoldCount()和isWriteLocked()。getReadLockCount()返回读锁的总数量,getReadHoldCount()表示当前线程持有读锁的次数,getWriteHoldCount()则为写锁的持有次数,isWriteLocked()判断当前锁是否处于写锁状态。

       实现原理源码分析:核心在于使用一个状态变量state来表示读写锁的状态。state的值可以是以下几种情况:0表示没有锁,1表示写锁,2表示读锁,3表示写锁与读锁同时存在。读锁和写锁之间存在兼容性,即写锁可以重入,读锁也同样可以重入。

       写锁的加锁操作,当尝试加锁时,检查state是否为0(无锁状态),如果是,则将state设置为1(写锁状态),并返回成功。如果state已为1或3,图册系统源码则说明已有写锁存在,无法再加写锁,直接返回失败。

       读锁的加锁操作,检查state是否为0(无锁状态)或2(已有读锁),如果是,则可成功加锁,将state设置为2(读锁状态),并返回成功。如果state为1(写锁状态)或3(写锁与读锁同时存在),则表示已有写锁存在,读锁无法加锁,返回失败。

       写锁与读锁的释放操作,都是将state设置回0,表示锁已经被释放。释放操作后,系统会自动检查是否有其他线程可以加锁。

       注意事项:在使用读写锁时,需要特别注意重入锁的情况。读锁和写锁都允许重入,即线程可以多次加锁,但在加锁前应先检查state,避免不必要的操作。

       总结:读写锁的实现主要通过状态变量来管理锁的状态,通过方法调用控制锁的加锁和释放。理解状态变量的含义和操作方法是关键。在实际应用中,正确使用读写锁可以显著提高并发程序的性能。

       :深入学习Java并发编程,可以参考《Effective Java》、《Java Concurrency in Practice》等书籍,同时关注Java官方文档关于读写锁的说明。

张图解析ReentrantReadWriteLock源码

       今天,我们深入探讨ReentrantReadWriteLock源码,解析其内部结构与工作原理。文章分为多个部分,逐一剖析读写锁的创建、获取与释放过程。

       读写锁规范与实现

       ReentrantReadWriteLock(简称RRW)作为读写锁,其核心功能在于控制并发访问的读与写操作。为了规范读写锁的使用,RRW首先声明了ReadWriteLock接口,并通过ReadLock与WriteLock实现接口,确保读锁与写锁的正确操作。

       为了实现锁的基本功能,WriteLock与ReadLock都继承了Lock接口。宣传flash源码这些类内部依赖于AQS(AbstractQueuedSynchronizer)抽象类,AQS为加锁和解锁过程提供了统一的模板函数,简化了锁实现的复杂性。

       核心组件与流程

       AQS提供了一套多线程访问共享资源的同步模板,包括tryAcquire、release等核心抽象函数。WriteLock与ReadLock通过继承Sync类,实现了AQS中的tryAcquire、release(写锁)和tryAcquireShared、tryReleaseShared(读锁)函数。

       Sync类在ReentrantReadWriteLock中扮演关键角色,它不仅实现了AQS的抽象函数,还通过位运算优化了读写锁状态的存储,减少了资源消耗。此外,Sync类还定义了HoldCounter与ThreadLocalHoldCounter,进一步管理锁的状态与操作。

       公平与非公平策略

       为了适应不同场景的需求,ReentrantReadWriteLock支持公平与非公平策略。通过Sync类的FairSync与NonfairSync子类,实现了读锁与写锁的阻塞控制。公平策略确保了线程按顺序获取锁,而非公平策略允许各线程独立竞争。

       全局图与细节解析

       文章最后,构建了一张全局图,清晰展示了ReentrantReadWriteLock的各个组件及其相互关系。通过深入细节,分别解释了读写锁的创建、获取与释放过程。以Lock接口的lock与unlock方法为主线,追踪了从Sync类出发的实现路径,包括tryAcquire、tryRelease等核心函数,以及它们在流程图中的表现。

       总结,ReentrantReadWriteLock通过继承AQS并扩展公平与非公平策略,实现了高效、灵活的读写锁功能。通过精心设计的Sync类及其相关组件,确保了多线程环境下的并发控制与资源访问优化。深入理解其内部实现,有助于在实际项目中更好地应用读写锁,提升并发性能与系统稳定性。

RocketMQ—NameServer总结及核心源码剖析

       一、NameServer介绍

       NameServer 是为 RocketMQ 设计的轻量级名称服务,具备简单、集群横向扩展、idea编译源码无状态特性和节点间不通信的特点。RocketMQ集群架构主要包含四个部分:Broker、Producer、Consumer 和 NameServer,这些组件之间相互通信。

       二、为什么要使用NameServer?

       当前有多种服务发现组件,如etcd、consul、zookeeper、nacos等。然而,RocketMQ选择自研NameServer而非使用开源组件,原因在于特定需求和性能优化。

       三、NameServer内部解密

       NameServer主要功能在于管理路由数据,由Broker提供,并在内部进行处理。路由数据被Producer和Consumer使用。NameServer核心逻辑基于RouteInfoManager类,用于维护路由信息管理,提供注册/查询等核心功能。NameServer使用HashMap和ReentrantReadWriteLock读写锁来管理路由数据。

       四、结论

       作为RocketMQ的“大脑”,NameServer保存集群MQ路由信息,包括主题、Broker信息及监控Broker运行状态,为客户端提供路由能力。NameServer的核心代码围绕多个HashMap操作,包括Broker注册、客户端查询等。

AQS与ReentrantLock详解

       J.U.C包中的Java.util.concurrent是一个强大的并发工具库,包含多种处理并发场景的组件,如线程池、队列和同步器等,由知名开发者Doug Lea设计。本文将深入讲解Lock接口及其关键实现ReentrantLock,它在并发编程中的重要性不可忽视,因为大部分J.U.C组件都依赖于Lock来实现并发安全。

       Lock接口的出现,弥补了synchronized在某些场景中的不足,提供了更灵活的并发控制。ReentrantLock作为Lock的一种实现,支持重入,即同一线程可以多次获取锁而不必阻塞。这种特性在处理多方法调用场景时避免了死锁问题。

       ReentrantReadWriteLock则允许读写操作并发进行,提高了读操作的并发性,避免了写操作对读写操作的阻塞,适用于读多写少的场景。在内存缓存示例中,读写锁通过HashMap以读写锁保护,确保并发访问的线程安全。

       ReentrantLock的实现核心是AQS(AbstractQueuedSynchronizer),它是Lock实现线程同步的核心组件。AQS提供了独占和共享锁两种功能,如ReentrantLock就基于AQS的独占模式。AQS内部维护了一个volatile状态变量,不同的实现类根据其具体需求定义其含义。

       ReentrantLock的源码分析中,我们看到lock()方法如何通过AQS的队列机制实现线程阻塞和唤醒。例如,NofairSync.lock展示了非公平锁的实现,涉及CAS(Compare and Swap)操作,保证了线程安全。Unsafe类在这其中发挥了关键作用,提供了低层次的内存操作,如CAS操作。

       总结来说,ReentrantLock和AQS是Java并发编程中的重要基石,通过理解它们的工作原理,可以更好地应对并发环境中的问题。

Java并发编程解析 | 基于JDK源码解析Java领域中并发锁之StampedLock锁的设计思想与实现原理 (三)

       在并发编程领域,核心问题涉及互斥与同步。互斥允许同一时刻仅一个线程访问共享资源,同步则指线程间通信协作。多线程并发执行历来面临两大挑战。为解决这些,设计原则强调通过消息通信而非内存共享实现进程或线程同步。

       本文探讨的关键术语包括Java语法层面实现的锁与JDK层面锁。Java领域并发问题主要通过管程解决。内置锁的粒度较大,不支持特定功能,因此JDK在内部重新设计,引入新特性,实现多种锁。基于JDK层面的锁大致分为4类。

       在Java领域,AQS同步器作为多线程并发控制的基石,包含同步状态、等待与条件队列、独占与共享模式等核心要素。JDK并发工具以AQS为基础,实现各种同步机制。

       StampedLock(印戳锁)是基于自定义API操作的并发控制工具,改进自读写锁,特别优化读操作效率。印戳锁提供三种锁实现模式,支持分散操作热点与削峰处理。在JDK1.8中,通过队列削峰实现。

       印戳锁基本实现包括共享状态变量、等待队列、读锁与写锁核心处理逻辑。读锁视图与写锁视图操作有特定队列处理,读锁实现包含获取、释放方式,写锁实现包含释放方式。基于Lock接口的实现区分读锁与写锁。

       印戳锁本质上仍为读写锁,基于自定义封装API操作实现,不同于AQS基础同步器。在Java并发编程领域,多种实现与应用围绕线程安全,根据不同业务场景具体实现。

       Java锁实现与运用远不止于此,还包括相位器、交换器及并发容器中的分段锁。在并发编程中,锁作为实现方式之一,提供线程安全,但实际应用中锁仅为单一应用,提供并发编程思想。

       本文总结Java领域并发锁设计与实现,重点介绍JDK层面锁与印戳锁。文章观点及理解可能存在不足,欢迎指正。技术研究之路任重道远,希望每一份努力都充满价值,未来依然充满可能。

C++ shared_mutex应用以及源码解析

       在实际应用中,处理并发问题是开发实践中的一大挑战。当多个线程同时访问同一资源时,数据竞态问题便随之而来。为了解决此问题,互斥量(mutex)应运而生,它允许同一时刻只有一个线程访问临界资源,实现资源访问的排他性。

       当线程间的读写操作频率不一致时,常规的互斥量无法满足高效访问的需求。此时,共享互斥锁(shared_mutex)成为了解决方案,它允许多个线程同时读取资源,而写操作则需要独占资源。这尤其适用于读操作频繁而写操作不频繁的场景,能显著提升程序效率。

       下面,我们通过代码实例来探讨共享互斥锁的使用。定义读写锁时,首先引入`std::shared_mutex`。通过`std::shared_lock`操作,可以以共享方式立即获取锁,或在构造时以独占方式上锁。锁的释放则在析构函数中完成。

       三个线程的示例代码展示了读写操作的并发执行。运行结果显示,读操作线程得到的临界资源值准确无误,证明了共享互斥锁在读操作并发时的正确性。然而,读操作线程的输出显示了一定程度的混乱,这并非共享互斥锁的问题,而是输出流操作的并发性导致的。

       深入源码解析,我们可以发现`std::shared_lock`和`std::unique_lock`的实现细节。两者均使用RAII技术进行锁管理,但共享锁允许以共享或独占方式获取锁,而独占锁仅允许独占获取。源码中展示了锁的上锁和解锁过程,以及内部状态管理,包括持有锁状态的判断和更新。

       共享互斥锁的底层实现基于`shared_mutex_base`类,通过一组成员变量和API封装了锁的管理逻辑。尝试加锁和解锁过程体现了锁的非阻塞特性。在进行锁的释放时,需要考虑共享持有状态,确保锁的正确释放。

       总结而言,共享互斥锁提供了高效且灵活的并发控制机制,适用于读操作频繁、写操作不频繁的场景。通过深入源码解析,我们能够更全面地理解锁的实现细节和工作原理,从而在实际开发中更加有效地应用共享互斥锁,解决并发问题。

java中的非公平锁不怕有的线程一直得不到执行吗

       首先来看公平锁和非公平锁,我们默认使用的锁是非公平锁,只有当我们显示设置为公平锁的情况下,才会使用公平锁,下面我们简单看一下公平锁的源码,如果等待队列中没有节点在等待,则占有锁,如果已经存在等待节点,则返回失败,由后面的程序去将此线程加入等待队列

       通过上面的代码,我们可以推断,当使用公平锁的情况下,并且同一个线程的执行时间较长时,线程内部进行了多次的锁的获取和释放,效率非常低下,可以参加Lesson8中的demo:

       demo Lesson8LockIntPerform:在使用ReentrantLock加非公平锁的情况下个线程循环下单数为:

       demo Lesson8LockIntPerform:在使用ReentrantLock加非公平锁的情况下个线程循环下单数为:

       demo Lesson8LockFairIntPerform:在使用ReentrantLock加公平锁的情况下个线程循环下单数为:

       demo Lesson8LockFairIntPerform:在使用ReentrantLock加公平锁的情况下个线程循环下单数为:

       上面的demo中,在使用公平锁的情况下性能明显降低,非公平锁的性能是公平锁性能的几十倍以上,这和公平锁每次试图占有锁时,都必须先要进等待队列,按照FIFO的顺序去获取锁,因此在我们的实验情景下,使用公平锁的线程进行了频繁切换,而频繁切换线程,性能必然会下降的厉害,这也告诫了我们在实际的开发过程中,在需要使用公平锁的情景下,务必要考虑线程的切换频率。

       接下来我们来看一下读写锁,通过看读写锁的实现源码,我们可以发现,读锁和写锁共用同一个等待队列,那么在采用非公平锁的情况下,如果读锁的线程执行时间比较长,并且读锁的并发比较高,那么写锁的线程便永远都拿不到锁,那么实际的情况会不会是这样呢?

       demo Lesson3WriteReadLock:此demo的读线程在不断的占用读锁,按照推论,写锁的线程是没有机会获取到锁的,但是实际情况是写锁的线程可以正常的获取到锁,那么是什么原因使得写锁的线程可以获取到锁的了?通过查看源代码,会发现有这样的一个方法:

       上面的方法,实现了一个新的读线程获取锁的中断,它会读取等待队列中下一个等待锁的线程,如果它是获取写锁的线程,那么此方法返回为真,调用它的程序会把这个试图获取读锁的线程加入到等待队列,从而终止了读线程一直都在占有锁的情况。

9.读写锁ReentrantReadWriteLock 的实现原理

       了解读写锁之前,想象一下这样的场景:在多个线程中,频繁地进行读取和少量写入操作。如果使用传统的互斥锁,当多个线程同时读取时,虽然没有竞争,但锁仍然会被占用,造成资源浪费。这就是为什么引入读写锁的原因。

       ReentrantReadWriteLock 提供了readLock()和writeLock()方法,分别用于获取读锁和写锁,但这些方法获取的并不是实际的锁资源,而是锁对象。另外,getReadLockCount()和getWriteHoldCount()分别统计当前读锁和写锁的持有次数,isWriteLocked()用于判断写锁是否被占用。

       通过一个简单的代码演示,我们可以观察到三种可能的结果,这展示了读写锁在实际操作中的灵活性。回到实现原理,ReentrantReadWriteLock基于AQS框架,通过一个state变量管理读写状态。为了解决多种状态表示的问题,它将state变量拆分为多个位,每个位对应一种状态,如读锁和写锁。

       具体来说,写锁的获取和释放是这样的:

       获取写锁的源码:在满足条件后,写锁会被获取,并更新状态。

       释放写锁的源码:确保写锁被正确释放,不会导致死锁。

       读锁的获取和释放过程类似,但更为复杂,因为它允许线程在持有写锁后获取读锁,然后在读写操作完成后释放锁。这种机制被称为锁降级,以提高并发性能。

搜索关键词:linphone源码分析