皮皮网

【红包扫雷源码搭建】【游戏php源码下载】【南航网站首页源码】executorservice 源码

时间:2024-11-28 21:36:09 来源:风扇源码 作者:blbl登录页面源码

1.ForkjoinPool -1
2.java线程池(一):java线程池基本使用及Executors
3.yarn源码分析(四)AppMaster启动
4.Java原理系列ScheduledThreadPoolExecutor原理用法示例源码详解

executorservice 源码

ForkjoinPool -1

        ForkJoin是用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架。Fork就是把一个大任务切分为若干子任务并行的执行,Join就是合并这些子任务的执行结果,最后得到这个大任务的结果。

        下面是一个是一个简单的Join/Fork计算过程,将1—数字相加

        通常这样个模型,你们会想到什么?

        Release Framework ? 常见的处理模型是什么? task pool - worker pool的模型。 但是Forkjoinpool 采取了完全不同的模型。

        ForkJoinPool一种ExecutorService的实现,运行ForkJoinTask任务。ForkJoinPool区别于其它ExecutorService,主要是因为它采用了一种工作窃取(work-stealing)的机制。所有被ForkJoinPool管理的线程尝试窃取提交到池子里的任务来执行,执行中又可产生子任务提交到池子中。

        ForkJoinPool维护了一个WorkQueue的数组(数组长度是2的整数次方,自动增长)。每个workQueue都有任务队列(ForkJoinTask的数组),并且用base、top指向任务队列队尾和队头。work-stealing机制就是工作线程挨个扫描任务队列,如果队列不为空则取队尾的任务并执行。示意图如下

        流程图:

        pool属性

        workQueues是pool的属性,它是WorkQueue类型的数组。externalPush和externalSubmit所创建的workQueue没有owner(即不是worker),且会被放到workQueues的偶数位置;而createWorker创建的workQueue(即worker)有owner,且会被放到workQueues的奇数位置。

        WorkQueue的几个重要成员变量说明如下:

        这是WorkQueue的config,高位跟pool的config值保持一致,而低位则是workQueue在workQueues数组的位置。

        从workQueues属性的介绍中,我们知道,不是所有workQueue都有worker,没有worker的workQueue称为公共队列(shared queue),config的第位就是用来判断是否是公共队列的。在externalSubmit创建工作队列时,有:

        q.config = k | SHARED_QUEUE;

        其中q是新创建的workQueue,k就是q在workQueues数组中的位置,SHARED_QUEUE=1<<,注意这里config没有保留mode的信息。

        而在registerWorker中,则是这样给workQueue的config赋值的:

        w.config = i | mode;

        w是新创建的workQueue,i是其在workQueues数组中的位置,没有设置SHARED_QUEUE标记位

        scanState是workQueue的属性,是int类型的。scanState的低位可以用来定位当前worker处于workQueues数组的哪个位置。每个worker在被创建时会在其构造函数中调用pool的registerWorker,而registerWorker会给scanState赋一个初始值,这个值是奇数,因为worker是由createWorker创建,并会被放到WorkQueues的奇数位置,而createWorker创建worker时会调用registerWorker。

        简言之,worker的scanState初始值是奇数,非worker的scanstate初始值=INACTIVE=1<<,小于0(非worker的workQueue在externalSubmit中创建)。

        当每次调用signalWork(或tryRelease)唤醒worker时,worker的高位就会加1

        另外,scanState<0表示worker未激活,当worker调用runtask执行任务时,scanState会被置为偶数,即设置scanState的最右边一位为0。

        worker休眠时,是这样存储的

        worker的唤醒类似这样:

        在worker休眠的4行伪码中,让ctl的低位的值变为worker.scanState,这样下次就可以通过scanState唤醒该worker。唤醒该worker时,把该worker的preStack设置为ctl低位的值,这样下下次唤醒的worker就是scanState等于该preStack的worker。

        这里通过preStack保存下一个worker,这个worker比当前worker更早地在等待,所以形成一个后进先出的栈。

        runState是int类型的值,控制整个pool的运行状态和生命周期,有下面几个值(可以好几个值同时存在):

        如果runState值为0,表示pool尚未初始化。

        RSLOCK表示锁定pool,当添加worker和pool终止时,就要使用RSLOCK锁定整个pool。如果由于runState被锁定,导致其他操作等待runState解锁(通常用wait进行等待),当runState设置了RSIGNAL,表示runState解锁,并通知(notifyAll)等待的操作。

        剩下4个值都跟runState生命周期有关,都可以顾名思义:

        当需要停止时,设置runState的STOP值,表示准备关闭,这样其他操作看到这个标记位,就不会继续操作,比如tryAddWorker看到STOP就不会再创建worker:

        而tryTerminate对这些生命周期状态的处理则是这样的:

        当前top和base的初始值为 INITIAL_QUEUE_CAPACITY >>>1= (1 << )>>>1 = /2。然后push一个task之后,top+=1,也就是说,top对应的位置是没有task的,最近push进来的task在top-1的位置。而base的位置则能对应到task,base对应最先放进队列的task,top-1对应最后放进队列的task。

        qlock值含义:1: locked, < 0: terminate; else 0

        即当qlock值位0时,可以正常操作,值=1时,表示锁定

        int SQMASK=0xe,则任何整数跟SQMASK位与后,得到的数就是偶数。

        证明:

        注意这里化为二进制是 ,尤其注意最右边第一位是0,任何数跟最右边第一位是0的数位与后,得到的数就是偶数,因为位与之后,第一位就是0,比如s=A&SQMASK,A可以是任意整数,然后把s按二进制进行多项式展开,则有s=2 n1+2 n2 ……+2^nn,这里n≥1,所以s可以被2整除,即s是偶数。

        所以一个数是奇数还是偶数,看其最右边第一位即可。

        我们知道workQueue有externalPush创建的和createWorker创建的worker,两种方式创建的workQueue,其放置到workQueues的位置是不同的,前者放到workQueue的偶数位置,而后者则放到奇数位置。不同workQueue找到自己在workQueues的位置的算法有点不同。

        下面看一下forkjoin框架获取workQueues中的偶数位置的workQueue的算法:

        这样就能获取workQueues的偶数位置的workQueue。m保证m & r & SQMASK这整个运算结果不会超出workQueues的下标,SQMASK保证取到的是偶数位置的workQueue。这里有一个有趣的现象,假设0到workQueues.length-1之间有n个偶数,m & r & SQMASK每次都能取到其中一个偶数,而且连续n次取到的偶数不会出现重复值,散列性非常好。而且是循环的,即1到n次取n个不同偶数,n+1到2n也是取n次不同偶数,此时n个偶数每个都被重新取一次。下面分析下r值有什么秘密,为何能保证这样的散列性

        ThreadLocalRandom内有一常量PROBE_INCREMENT = 0x9eb9,以及一个静态的probeGenerator =new AtomicInteger() ,然后每个线程的probe= probeGenerator.addAndGet(PROBE_INCREMENT)所以第一个线程的probe值是0x9eb9,第二个线程的值就是0x9eb9+0x9eb9,第三个线程的值就是0x9eb9+0x9eb9+0x9eb9以此类推,整个值是线性的,可以用y=kx表示,其中k=0x9eb9,x表示第几个线程。这样每个线程的probe可以保证不一样,而且具有很好的离散性。

        实际上,可以不用0x9eb9这个值,用任意一个奇数都是可以的,比如1。如果用1的话,probe+=1,这样每个线程的probe就都是不同的,而且具有很好的离散性。也就是说,假设有限制条件probe<n,超过n则产生溢出。则probe自加n次后才会开始出现重复值,n次前probe每次自加的值都不同。实际上用任意一个奇数,都可以保证probe自加n次后才会开始出现重复值,有兴趣可看本文最后附录部分。由于奇数的离散性,所以只要线程数小于m或者SQMASK两者中的最小值,则每个线程都能唯一地占据一个ws中的一个位置

        当一个操作是在非ForkjoinThread的线程中进行的,则称该操作为外部操作。比如我们前面执行pool.invoke,invoke内又执行externalPush。由于invoke是在非ForkjoinThread线程中进行的(这里是在main线程中进行),所以是一个外部操作,调用的是externalPush。之后task的执行是通过ForkJoinThread来执行的,所以task中的fork就是内部操作,调用的是push,把任务提交到工作队列。其实fork的实现是类似下面这样的:

        即fork会根据执行自身的线程是否是ForkJoinThread的实例来判断是处于外部还是内部。那为何要区分内外部?

        任何线程都可以使用ForkJoin框架,但是对于非ForkJoinThread的线程,它到底是怎样的,ForkJoin无法控制,也无法对其优化。因此区分出内外部,这样方便ForkJoin框架对任务的执行进行控制和优化

        forkJoinPool.invoke(task)是把任务放入工作队列,并等待任务执行。源码如下

        这里externalPush负责任务提交,externalPush源码如下:

java线程池(一):java线程池基本使用及Executors

       @[toc] 在前面学习线程组的时候就提到过线程池。实际上线程组在我们的日常工作中已经不太会用到,但是线程池恰恰相反,是我们日常工作中必不可少的工具之一。现在开始对线程池的使用,以及底层ThreadPoolExecutor的红包扫雷源码搭建源码进行分析。

1.为什么需要线程池

       我们在前面对线程基础以及线程的生命周期有过详细介绍。一个基本的常识就是,线程是一个特殊的对象,其底层是依赖于JVM的native方法,在jvm虚拟机内部实现的。线程与普通对象不一样的地方在于,除了需要在堆上分配对象之外,还需要给每个线程分配一个线程栈、以及本地方法栈、程序计数器等线程的私有空间。线程的初始化工作相对于线程执行的大多数任务而言,都是一个耗时比较长的工作。这与数据库使用一样。有时候我们连接数据库,仅仅只是为了执行一条很小的sql语句。但是在我们日常的开发工作中,我们的游戏php源码下载绝大部分工作内容,都会分解为一个个短小的执行任务来执行。这样才能更加合理的复用资源。这种思想就与我们之前提到的协程一样。任务要尽可能的小。但是在java中,任务不可能像协程那样拆分得那么细。那么试想,如果说,有一个已经初始化好的很多线程,在随时待命,那么当我们有任务提交的时候,这些线程就可以立即工作,无缝接管我们的任务请求。那么效率就会大大增加。这些个线程可以处理任何任务。这样一来我们就把实际的任务与线程本身进行了解耦。从而将这些线程实现了复用。 这种复用的一次创建,可以重复使用的池化的线程对象就被成为线程池。 在线程池中,我们的线程是可以复用的,不用每次都创建一个新的南航网站首页源码线程。减少了创建和销毁线程的时间开销。 同时,线程池还具有队列缓冲策略,拒绝机制和动态线程管理。可以实现线程环境的隔离。当一个线程有问题的时候,也不会对其他的线程造成影响。 以上就是我们使用线程池的原因。一句话来概括就是资源复用,降低开销。

2.java中线程池的实现

       在java中,线程池的主要接口是Executor和ExecutorService在这两个接口中分别对线程池的行为进行了约束,最主要的是在ExecutorService。之后,线程池的实际实现类是AbstractExecutorService类。这个类有三个主要的实现类,ThreadpoolExecutorService、ForkJoinPool以及DelegatedExecutorService。

       后面我们将对这三种最主要的实现类的源码以及实现机制进行分析。

3.创建线程的工厂方法Executors

       在java中, 已经给我们提供了创建线程池的工厂方法类Executors。通过这个类以静态方法的cad 手机看图 源码模式可以为我们创建大多数线程池。Executors提供了5种创建线程池的方式,我们先来看看这个类提供的工厂方法。

3.1 newFixedThreadPool/** * Creates a thread pool that reuses a fixed number of threads * operating off a shared unbounded queue.At any point, at most * { @code nThreads} threads will be active processing tasks. * If additional tasks are submitted when all threads are active, * they will wait in the queue until a thread is available. * If any thread terminates due to a failure during execution * prior to shutdown, a new one will take its place if needed to * execute subsequent tasks.The threads in the pool will exist * until it is explicitly { @link ExecutorService#shutdown shutdown}. * * @param nThreads the number of threads in the pool * @return the newly created thread pool * @throws IllegalArgumentException if { @code nThreads <= 0} */public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());}

       这个方法能够创建一个固定线程数量的无界队列的线程池。参数nthreads是最多可同时处理的活动的线程数。如果在所有线程都在处理任务的情况下,提交了其他的任务,那么这些任务将处于等待队列中。直到有一个线程可用为止。如果任何线程在关闭之前的执行过程中,由于失败而终止,则需要在执行后续任务的时候,创建一个新的线程来替换。线程池中的所有线程都将一直存在,直到显示的调用了shutdown方法。 上述方法能创建一个固定线程数量的线程池。内部默认的是使用LinkedBlockingQueue。但是需要注意的是,这个LinkedBlockingQueue底层是链表结构,其允许的最大队列长度为Integer.MAX_VALUE。

public LinkedBlockingQueue() { this(Integer.MAX_VALUE);}

       这样在使用的过程中如果我们没有很好的控制,那么就可能导致内存溢出,出现OOM异常。图像处理matlab源码因此这种方式实际上已经不被提倡。我们在使用的过程中应该谨慎使用。 newFixedThreadPool(int nThreads, ThreadFactory threadFactory)方法:

/** * Creates a thread pool that reuses a fixed number of threads * operating off a shared unbounded queue, using the provided * ThreadFactory to create new threads when needed.At any point, * at most { @code nThreads} threads will be active processing * tasks.If additional tasks are submitted when all threads are * active, they will wait in the queue until a thread is * available.If any thread terminates due to a failure during * execution prior to shutdown, a new one will take its place if * needed to execute subsequent tasks.The threads in the pool will * exist until it is explicitly { @link ExecutorService#shutdown * shutdown}. * * @param nThreads the number of threads in the pool * @param threadFactory the factory to use when creating new threads * @return the newly created thread pool * @throws NullPointerException if threadFactory is null * @throws IllegalArgumentException if { @code nThreads <= 0} */public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) { return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>(),threadFactory);}

       这个方法与3.1中newFixedThreadPool(int nThreads)的方法的唯一区别就是,增加了threadFactory参数。在前面方法中,对于线程的创建是采用的默认实现Executors.defaultThreadFactory()。而在此方法中,可以根据需要自行定制。

3.2 newSingleThreadExecutor/** * Creates an Executor that uses a single worker thread operating * off an unbounded queue. (Note however that if this single * thread terminates due to a failure during execution prior to * shutdown, a new one will take its place if needed to execute * subsequent tasks.)Tasks are guaranteed to execute * sequentially, and no more than one task will be active at any * given time. Unlike the otherwise equivalent * { @code newFixedThreadPool(1)} the returned executor is * guaranteed not to be reconfigurable to use additional threads. * * @return the newly created single-threaded Executor */public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>()));}

       此方法将会创建指有一个线程和一个无届队列的线程池。需要注意的是,如果这个执行线程在执行过程中由于失败而终止,那么需要在执行后续任务的时候,用一个新的线程来替换。 那么这样一来,上述线程池就能确保任务的顺序性,并且在任何时间都不会有多个线程处于活动状态。与newFixedThreadPool(1)不同的是,使用newSingleThreadExecutor返回的ExecutorService不能被重新分配线程数量。而使用newFixExecutor(1)返回的ExecutorService,其活动的线程的数量可以重新分配。后面专门对这个问题进行详细分析。 newSingleThreadExecutor(ThreadFactory threadFactory) 方法:

/** * Creates an Executor that uses a single worker thread operating * off an unbounded queue, and uses the provided ThreadFactory to * create a new thread when needed. Unlike the otherwise * equivalent { @code newFixedThreadPool(1, threadFactory)} the * returned executor is guaranteed not to be reconfigurable to use * additional threads. * * @param threadFactory the factory to use when creating new * threads * * @return the newly created single-threaded Executor * @throws NullPointerException if threadFactory is null */public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) { return new FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>(),threadFactory));}

       这个方法与3.3中newSingleThreadExecutor的区别就在于增加了一个threadFactory。可以自定义创建线程的方法。

3.3 newCachedThreadPool/** * Creates a thread pool that creates new threads as needed, but * will reuse previously constructed threads when they are * available.These pools will typically improve the performance * of programs that execute many short-lived asynchronous tasks. * Calls to { @code execute} will reuse previously constructed * threads if available. If no existing thread is available, a new * thread will be created and added to the pool. Threads that have * not been used for sixty seconds are terminated and removed from * the cache. Thus, a pool that remains idle for long enough will * not consume any resources. Note that pools with similar * properties but different details (for example, timeout parameters) * may be created using { @link ThreadPoolExecutor} constructors. * * @return the newly created thread pool */public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE,L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>());}

       这个方法用来创建一个线程池,该线程池可以根据需要自动增加线程。以前的线程也可以复用。这个线程池通常可以提高很多执行周期短的异步任务的性能。对于execute将重用以前的构造线程。如果没有可用的线程,就创建一个 新的线程添加到pool中。秒内,如果该线程没有被使用,则该线程将会终止,并从缓存中删除。因此,在足够长的时间内,这个线程池不会消耗任何资源。可以使用ThreadPoolExecutor构造函数创建具有类似属性但是详细信息不同的线程池。 ?需要注意的是,这个方法创建的线程池,虽然队列的长度可控,但是线程的数量的范围是Integer.MAX_VALUE。这样的话,如果使用不当,同样存在OOM的风险。比如说,我们使用的每个任务的耗时比较长,任务的请求又非常快,那么这样势必会造成在单位时间内创建了大量的线程。从而造成内存溢出。 newCachedThreadPool(ThreadFactory threadFactory)方法:

/** * Creates a thread pool that creates new threads as needed, but * will reuse previously constructed threads when they are * available, and uses the provided * ThreadFactory to create new threads when needed. * @param threadFactory the factory to use when creating new threads * @return the newly created thread pool * @throws NullPointerException if threadFactory is null */public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) { return new ThreadPoolExecutor(0, Integer.MAX_VALUE,L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>(),threadFactory);}

       这个方法区别同样也是在于,增加了threadFactory可以自行指定线程的创建方式。

2.4 newScheduledThreadPool/** * Creates a thread pool that can schedule commands to run after a * given delay, or to execute periodically. * @param corePoolSize the number of threads to keep in the pool, * even if they are idle * @return a newly created scheduled thread pool * @throws IllegalArgumentException if { @code corePoolSize < 0} */public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) { return new ScheduledThreadPoolExecutor(corePoolSize);}

       创建一个线程池,该线程池可以将任务在指定的延迟时间之后运行。或者定期运行。这个方法返回的是ScheduledThreadPoolExecutor。这个类是ThreadPoolExecutor的子类。在原有线程池的的基础之上,增加了延迟和定时功能。我们在后面分析了ThreadPoolExecutor源码之后,再来分析这个类的源码。 与之类似的方法:

/** * Creates a thread pool that can schedule commands to run after a * given delay, or to execute periodically. * @param corePoolSize the number of threads to keep in the pool, * even if they are idle * @param threadFactory the factory to use when the executor * creates a new thread * @return a newly created scheduled thread pool * @throws IllegalArgumentException if { @code corePoolSize < 0} * @throws NullPointerException if threadFactory is null */public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize, ThreadFactory threadFactory) { return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);}

       通过这个方法,我们可以指定threadFactory。自定义线程创建的方式。 同样,我们还可以只指定一个线程:

public static ScheduledExecutorService newSingleThreadScheduledExecutor() { return new DelegatedScheduledExecutorService(new ScheduledThreadPoolExecutor(1));}public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) { return new DelegatedScheduledExecutorService(new ScheduledThreadPoolExecutor(1, threadFactory));}

       上述两个方法都可以实现这个功能,但是需要注意的是,这两个方法的返回在外层包裹了一个包装类。

3.5 newWorkStealingPool

       这种方式是在jdk1.8之后新增的。我们先来看看其源码:

public LinkedBlockingQueue() { this(Integer.MAX_VALUE);}0

       这个方法实际上返回的是ForkJoinPool。该方法创建了一

yarn源码分析(四)AppMaster启动

       在容器分配完成之后,启动容器的代码主要在ContainerImpl.java中进行。通过状态机转换,container从NEW状态向其他状态转移时,会调用RequestResourceTransition对象。RequestResourceTransition负责将所需的资源进行本地化,或者避免资源本地化。若需本地化,还需过渡到LOCALIZING状态。为简化理解,此处仅关注是否进行资源本地化的情况。

       为了将LAUNCH_CONTAINER事件加入事件处理队列,调用了sendLaunchEvent方法。该事件由ContainersLauncher负责处理。ContainersLauncher的handle方法中,使用一个ExecutorService(线程池)容器Launcher。ContainerLaunch实现了Callable接口,其call方法生成并执行launch_container脚本。以MapReduce框架为例,该脚本在hadoop.tmp.dir/application name/container name目录下生成,其主要作用是启动MRAppMaster进程,即MapReduce的ApplicationMaster。

Java原理系列ScheduledThreadPoolExecutor原理用法示例源码详解

       ScheduledThreadPoolExecutor是Java中实现定时任务与周期性执行任务的高效工具。它继承自ThreadPoolExecutor类,能够提供比常规Timer类更强大的灵活性与功能,特别是在需要多个工作线程或有特殊调度需求的场景下。

       该类主要功能包含但不限于提交在指定延迟后执行的任务,以及按照固定间隔周期执行的任务。它实现了ScheduledExecutorService接口,进而提供了丰富的API以实现任务的调度与管理。其中包括now()、getDelay()、compareTo()等方法,帮助开发者更精确地处理任务调度与延迟。

       在实际应用中,ScheduledThreadPoolExecutor的使用案例广泛。比如,初始化一个ScheduledThreadPoolExecutor实例,设置核心线程数,从而为定时任务提供资源保障。提交延迟任务,例如在5秒后执行特定操作,并输出相关信息。此外,提交周期性任务,如每隔2秒执行一次特定操作,用于实时监控或数据更新。最后,通过调用shutdown()与shutdownNow()方法来关闭执行器并等待所有任务完成,确保系统资源的合理释放与任务的有序结束。

       总的来说,ScheduledThreadPoolExecutor在处理需要精确时间控制的任务时展现出了强大的功能与灵活性,是Java开发者在实现定时与周期性任务时的首选工具。

关键词:源码裸车

copyright © 2016 powered by 皮皮网   sitemap