1.jmeter中借助OCR实现验证码的验证源码识别
2.按键精灵安卓版用百度云识别通过“算数验证码”
3.Python破译12306图像验证码!据说12306验证码是码自码验最难破解的?
jmeter中借助OCR实现验证码的识别
在JMeter进行接口测试时,验证码处理是动识一个常见的挑战。虽然手动测试时,别源直接绕过或请求开发设置简单验证码是证码自动常见做法,但这并不适用于自动化测试。识别设置c 源码 测试案例本文将介绍一种利用OCR技术在JMeter中识别验证码的验证源码方法,但请注意,码自码验对于背景复杂干扰的动识,识别率可能不高,别源适合纯色底纹的证码自动情况。
首先,识别设置通过JMeter模拟登录接口,验证源码获取验证码。码自码验启动JMeter,动识求网络音乐源码创建线程组并配置HTTP和Debug采样器。启用监听器,将验证码保存为1.png文件。
接着,使用Java编写脚本,将转换为Base格式,这包括导入sun.misc.BASEDecoder.jar包,创建包和文件,编写ToImage类,并导出为jar包。在Beanshell处理器中,导入此jar包并调用其方法处理验证码。
对于验证码识别,推荐使用开源的ssc源码免费下载jmeter-captcha插件,从Gitee下载jar包或源码进行二次开发。在JMeter的测试计划中,添加后置处理器,如Beanshell,配置OCR插件参数。简单验证码如纯数字、字母或汉字的识别率较高。
尽管基础识别率可能有待提高,但通过优化OCR处理代码,可以提升识别效果。后续将分享干扰优化的技巧和深度学习方法,以进一步提升识别准确率。
本文提供了一个基础的验证码识别框架,欢迎您持续关注并分享给有需要的仿头条军事 源码朋友。
按键精灵安卓版用百度云识别通过“算数验证码”
百度云识别在简单文字识别上表现出色,因此我们尝试使用其识别算数验证码。先预览验证,如下所示:
显示包含加减乘除四种运算,我们需要计算每个等式的结果。
接下来是运行效果演示。
实现过程包含以下步骤:
一、从模拟器中截图验证码。
二、识别内容。例如,解析"-=",识别为字符串。
三、vb调用swf源码判定算式类型。通过查找加号、减号、乘号、除号,判断运算符。
四、提取数字。以"-="为例,通过减号分割为""和"=",然后去掉"="后的字符得到""。
五、执行计算。依据判定的运算符计算结果。
代码如下,使用了xiaomu.mql库进行操作:
Import "xiaomu.mql"
定义截图路径。
输入百度云API和Secret。
执行截图操作。
使用百度云OCR识别功能。
打印识别结果。
定义计算函数,根据运算符计算结果。
如果需要命令库,可以关注公众号并回复“命令库”获取。
如需了解百度云文字识别源码及使用方法,可查看先前的文章《百度云文字识别源码分享》。
Python破译图像验证码!据说验证码是最难破解的?
本文探讨了如何利用Python编写一个自动化处理验证码的工具包,以解决网站登录时遇到的图像验证码问题,特别是针对网站的挑战性验证码。本文将详细阐述开发工具、相关模块及安装步骤、项目介绍、代码实现和最终的运行效果。
开发工具包括Python 3.6.4,以及一系列的Python模块:requests、opencv-python、numpy、keras、tensorflow,以及Python自带的模块。首先,确保安装了Python,并将Python添加到环境变量中,然后使用pip命令安装所需的模块。
本文介绍了一个名为DecryptLogin的Python第三方库,该库允许用户轻松地实现各大网站的模拟登录操作,例如模拟登录知乎。DecryptLogin默认要求用户手动输入登录时遇到的验证码,但通过自定义一个验证码处理函数,可以实现验证码的自动识别与处理。
为了解决DecryptLogin的验证码自动处理问题,开源了hackcaptcha包。此包主要服务于验证码自动识别,目前支持两种类型的验证码自动处理:数字(含英文字母)验证码和的点击验证码。用户需要通过pip安装这个库,并确保在电脑上已安装keras和对应版本的tensorflow。
对于数字验证码,hackcaptcha直接调用了百度的文字识别API。用户每天可免费调用一定次数,对于个人学习和娱乐用途完全足够。具体实现步骤包括注册百度账号、获取API Key和Secret Key,然后编写几行代码即可实现验证码识别。
对于的点击验证码,通常需要将验证码图像进行分割,并分别训练分类器和文字分类器。本文作者直接利用了现有解决方案,简化了实现过程,只需调用相应的API即可。
结合DecryptLogin库,实现了一个自动化处理验证码的工具,使得用户无需手动输入验证码即可实现模拟登录操作。此外,作者还提供了一些编程干货,包括Python电子书、标准库资料、项目源码和学习资源,以回馈读者。