本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【px4 源码】【atom 源码分析】【精选街源码】lbp源码

2024-11-25 05:30:58 来源:探索 分类:探索

1.opencv中LBPH算法
2.纹理特征提取方法:LBP, 灰度共生矩阵
3.LBP特征和LPQ特征
4.计算机视觉算法有哪些?CV算法
5.(四十三)特征点检测-LBP
6.海龟交易策略的mc源码

lbp源码

opencv中LBPH算法

       人脸识别技术旨在将待识别的人脸与数据库中的人脸进行匹配,类似于指纹识别。它与人脸检测不同,人脸检测是在图像中定位人脸,实现搜寻功能。从OpenCV2.4版本开始,px4 源码引入了FaceRecognizer类,用于人脸识别,便于进行相关实验。

       LBP算子最初定义为在3*3窗口内,以中心像素为阈值,比较周围8个像素的灰度值。若周围像素值大于或等于中心像素值,则标记为1,否则为0。3*3邻域内的8个点经过比较,可产生8位二进制数,即LBP码(共种),反映该区域的纹理特征。

       原始LBP算子存在局限性,研究人员对其进行了改进和优化。以下为几种改进方法:

       1.1 圆形LBP算子:将3*3邻域扩展到任意邻域,用圆形邻域代替正方形邻域,允许在半径为R的圆形邻域内有任意多个像素点。

       1.2 旋转不变模式:不断旋转圆形邻域得到一系列初始定义的LBP值,取最小值作为该邻域的LBP值,实现旋转不变性。

       1.3 等价模式:Ojala提出采用“等价模式”来对LBP算子的模式种类进行降维,减少二进制模式的种类。

       2LBP特征用于检测的原理:LBP算子在每个像素点得到一个LBP编码,对图像提取LBP算子后,得到的原始LBP特征依然是“一幅”。实际应用中,一般采用LBP特征谱的atom 源码分析统计直方图作为特征向量进行分类识别。

       3 LBPH人脸识别关键部分源码:以OpenCV2.4.9为例,LBPH类源码位于opencv2.4.9\sources\modules\contrib\src\facerec.cpp。LBPH使用圆形LBP算子,默认情况下,圆的半径为1,采样点P为8,x方向和y方向上的分区个数为8,即有8*8=个分区。相似度阈值小于该值时才会产生匹配结果。

       4 LBP人脸识别示例:示例代码中使用的人脸库是AT&T人脸库,共张人脸照片。示例程序中用一个CSV文件指明人脸数据库文件及标签,每一行包含一个文件名路径之后是其标签值,中间以分号分隔。

纹理特征提取方法:LBP, 灰度共生矩阵

       纹理特征提取是计算机视觉领域的重要研究内容。本文将详细介绍两种常见的纹理特征提取方法:局部二值模式(LBP)和灰度共生矩阵(GLCM)。

       1. 局部二值模式(LBP)

       LBP是一种用于描述图像局部纹理特征的算子。它的核心思想是以某个像素点为中心,与其邻域像素点共同计算。具体来说,邻域像素点的选择方法并不唯一,本文选择环形邻域进行说明。窗口中心的像素点作为中心,该像素点的像素值作为阈值。然后将周围8个像素点的灰度值与该阈值进行比较,若周围某像素值大于中心像素值,则该像素点位置被标记为1;反之,该像素点标记为0。如此这样,该窗口的8个点可以产生8位的无符号数,这样就得到了该窗口的LBP值,该值反应了该窗口的纹理信息。

       2. 灰度共生矩阵(GLCM)

       灰度共生矩阵是精选街源码通过计算灰度图像得到它的共生矩阵,然后透过计算该共生矩阵得到矩阵的部分特征值,来分别代表图像的某些纹理特征。灰度共生矩阵能反映图像灰度关于方向、相邻间隔、变化幅度等综合信息,它是分析图像的局部模式和它们排列规则的基础。

       计算纹理特征的第一步,就是将多通道的图像(一般指RGB图像)转换为灰度图像,分别提取出多个通道的灰度图像。一般在一幅图像中的灰度级有级,从0--。但在计算灰度共生矩阵时我们并不需要个灰度级,且计算量实在太大,所以一般分为8个灰度级或个灰度级。

       灰度共生矩阵有多个方向,如0°、°、°、°等。以左上角元素为坐标原点,原点记为(1, 1);以此为基础举例,第四行第二列的点记为(4, 2)。根据方向不同,统计矩阵值的方式也不同。

       计算得到单个窗口的灰度共生矩阵的各个方向的矩阵后,就要用这些矩阵计算灰度共生矩阵特征值。一般采用四个最常用的特征来提取图像的纹理特征:能量、对比度、相关度、熵。这些特征值可以反映图像纹理的均匀程度、清晰度、局部灰度相关性以及随机性等信息。Api kong 源码

       最后,将整个图像的纹理特征值组合成一个纹理特征值矩阵,进而转换成纹理特征图像。本文已对源码进行测试封装,并上传到了笔者的GitHub网站上。感兴趣的读者可以访问以下链接查看具体实现:/upcAutoLang/GLCM-OpenCV

LBP特征和LPQ特征

       探索LBP特征与LPQ特征:深度纹理信息的捕捉与应用

       在计算机视觉领域,纹理信息的捕捉是关键一步,其中两种常用的特征描述方法——LBP(Local Binary Pattern)和LPQ(Local Phase Quantization)各具特色。让我们首先深入了解LBP的原始概念。

       1. 原始LBP特征的基石

       LBP算子以3x3的邻域为中心,通过比较像素值与中心像素值的关系,生成二进制编码。每个像素周围的8个像素点,若其灰度值大于中心,对应位置标记为1,否则为0。这样,每个像素点产生一个8位二进制数,总计种可能的LBP值,每一种都独特地反映了周围像素的纹理结构。重要的是,处理图像时必须保证是灰度图,彩色图需先转为灰度。

       2. LBP的匹配与实用价值

       LBP特征在目标检测中崭露头角。以人脸检测为例,虽然Haar+Adaboost是常见方法,但LBP+Adaboost因其更快的训练速度和更好的检测性能备受青睐。在OpenCV的TrainCascade中,LBP特征通常采用DLBP(可能的改进版本)作为输入,提供更为精确的纹理特征。然而,具体实现细节需要查阅源码,如MB-LBP就是溯源码作用一种常见的LBP变体。

       对于OpenCV级联检测的深度理解,可以参考外文资料,但在此之前,尝试过训练分类器并应用LBP特征是不可或缺的预备知识。链接中的LIBSVM库提供了支持向量机的实现,为深度学习和纹理特征分析提供了强大支持。

       转向LPQ特征:超越LBP的纹理捕捉

       相比之下,LPQ特征更侧重于捕捉局部图像的相位信息,它通过量化局部相位梯度来描述纹理,这使得它在某些情况下优于LBP,尤其在处理复杂纹理和旋转不变性方面。LPQ特征在人脸识别和纹理分类中展示了其优势,但其计算复杂度相对较高,适合对精度有更高要求的应用场景。

       综上所述,LBP和LPQ特征都是纹理特征提取的重要手段,各有优劣,选择哪种方法取决于具体的应用需求和性能要求。通过深入理解和实践,我们可以更好地利用这些特征在计算机视觉任务中实现精准的图像分析。

计算机视觉算法有哪些?CV算法

       计算机视觉是深度学习领域内备受关注的分支,它汇聚了计算机科学、数学、工程、物理学以及心理学等多个学科的知识。关于计算机视觉算法有哪些,业内专家给出了以下解答。

       早期算法包括:

       子空间(线性降维)

       PCA(主成分分析):旨在最大限度地保留原始数据的主要信息,同时降低冗余信息;

       LDA(线性判别分析):通过增大类间差距、减小类内差距来实现分类;

       非线性降维:流形学习、加入核函数等方法。

       ICA(独立成分分析):相较于PCA,ICA在处理光照、人脸表情、姿态等方面具有更好的效果,但其泛化能力有限。

       HMM(隐马尔可夫):相比其他算法,HMM在处理光照变化、表情和姿态变化等方面更加鲁棒。

       后期算法:通过loss函数优化模型结构,从而得到具有区分度的特征。

       常用算法总结:

       计算机视觉相关算法的源代码;

       计算机视觉常用算法博客。

       特征提取算法(寻找关键点):

       (1) SIFT(尺度不变特征变换):具有尺度不变性,能够在图像中检测到关键点;

       (2) SURF(加速稳健特征,SIFT加速版):通过构建Hessian矩阵,判断当前点是否为邻近区域中更亮或更暗的点,从而确定关键点位置;

       优:特征稳定;

       缺:对于边缘光滑的目标提取能力较弱。

       (3) ORB:结合Fast与Brief算法,为Fast特征点增加方向性,实现旋转不变性,并提出金字塔方法解决尺度不变性问题;

       ORB算法速度是SIFT的倍,是SURF的倍。

       经观察,ORB算法在特征点标记时数量较少,如图所示。

       SIFT、SURF、ORB实现;

       (4) FAST角点检测:主要考虑像素点附近的圆形窗口上的个像素,通过比较像素强度,判断是否为角点;

       非极大值抑制:在存在多个关键点时,删除角响应度较小的特征点。

       (5) HOG(方向梯度直方图);

       (6) LBP(局部二值特征):论述了高维特征与验证性能的正相关关系,即人脸维度越高,验证的准确度就越高。

       (7) Haar:

(四十三)特征点检测-LBP

       时间为友,记录点滴。

       特征点检测领域并非只有一种算法,大神们总能带来新颖的想法。虽然不可能掌握所有算法,但有些思路是值得借鉴的。

       比如SIFT就是一个宝库,总能给我们带来启发。

       既然已经了解了Harris、SIFT、FAST等特征检测算法,以及特征点的定义和评判标准,那么我们就来探讨LBP如何在特征检测领域脱颖而出。

       思考一下特征点的优良性质:

       什么是LBP?

       LBP(Local Binary Pattern,局部二值模式)是一种描述图像局部纹理特征的算子,它具有旋转不变性和灰度不变性等显著优点。由T. Ojala、M. Pietikäinen和D. Harwood在年提出,用于纹理特征提取。它提取的是图像的局部纹理特征;

       它是如何实现的?

       首先谈谈原始LBP算子:

       通过比较3*3邻域内的8个点,可以得到8位二进制数(通常转换为十进制数即LBP码,共种,即2 Byte),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。

       虽然简单,但略显简陋(是不是与FAST算子有些类似)。这个LBP算子显然不能表示优良特征点,还好它出现的早(),所以后人对LBP做了很多优化,使其满足尺度不变、旋转不变、光照不变。

       尺度不变:

       无论是SIFT还是ORB,要做到尺度不变,我们通常采用金字塔扩展到多尺度空间,但LBP有它独特的方法。

       在原始的LBP中,我们选择的是以目标点为中心,3x3的8邻域,经历过FAST的我们很容易想到半径的概念。那么3x3代表的就是以目标点为圆心,半径为1的邻域,如果我们把半径扩展一下会怎么样呢?

       Ojala等人对LBP算子进行了改进,将3×3邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的LBP算子允许在半径为R的圆形邻域内有任意多个像素点。从而得到了诸如半径为R的圆形区域内含有P个采样点的LBP算子;

       这种情况下,对应黑点像素可能不是整数,要得到该点准确的像素值,必须对该点进行插值计算才能得到该点像素值,常见的插值方式为双线性插值或者立方插值。

       这种思路有点像“山不转,水转;水不转,人转”;

       旋转不变性:

       Maenpaa等人又将LBP算子进行了扩展,提出了具有旋转不变性的LBP算子,即不断旋转圆形邻域得到一系列初始定义的LBP值,取其最小值作为该邻域的LBP值。

       举一个具体的例子:下图所示的8种LBP模式,经过旋转不变的处理,最终得到的具有旋转不变性的LBP值为。也就是说,图中的8种LBP模式对应的旋转不变的LBP模式都是。

       光照不变:

       从LBP的差值计算可以看出,LBP本身就具有光照不变的特性(灰度值按比例缩放,强者恒强),但是我们可以引入权重概念,计算LBP码和对比度。

       好了,LBP就这么多。是不是感觉SIFT/ORB后什么都简单了些?

       在网上搜了个Python实现的LBP,实验了下,贴在这里:

       Python

       惯例,OpenCV早就给我们提供了LBP的算子,而且可以结合FaceDetect来用,

       C++

       1、lbpcascade_frontalface_improved文件我使用的是我们自己编译出来的,在Binfile\install\etc\lbpcascades目录下(你可以用everything搜索一下,OpenCV源码中也有提供) 2、今天我们首次使用了CascadeClassifier,这个我觉得有必要在后面详细解释一下。用OpenCV做人脸检测简直简单得不要不要的。

海龟交易策略的mc源码

       以下是海龟交易策略的MC源码内容简化版:

       初始化参数:初始余额(),损失阈值(2),赢利阈值(4)

       创建变量:交易次数(N),止损点(StopLoss),交易价值(DV),账户余额(AccountBalance),系统状态(system),资金风险(DollarRisk),平均权益价格(AvgEtyPrice),交易触发时间(LTT),交易跟踪器(Tracker),上次交易状态(LastTrade),累计盈利(myprofit),最高买入价(HBP),最低买入价(LBP),交易日数(Ndays)

       初始化价格变量:历史最高价(L-L)、历史最低价(S-S)

       天突破策略:如果当前无交易位置(市场位置=0),计算平均真实波动幅度(N),交易价值(DV),账户余额(AccountBalance),资金风险(DollarRisk),交易触发点(LTT),止损点(StopLoss),并初始化最高买入价(HBP)和最低买入价(LBP)。如果上次交易状态未记录,则进行买入和卖出操作,同时记录历史最高价和最低价。系统状态设置为1。

       天突破策略:如果当前无交易位置(市场位置=0),且上次交易状态为卖出,计算并执行与天突破策略相似的操作,但使用天的数据,同时系统状态设置为2。

       系统跟踪:如果当前状态为跟踪(Tracker=1/-1),并在价格突破止损或赢利点时改变交易状态。

       加仓逻辑:根据当前交易状态和持仓数量执行加仓操作,同时设置止损点。

       退出策略:在交易达到指定时间(天或天)后,根据当前市场位置执行卖出或买进平仓操作。

       输出报告:打印交易日期、时间、连续赢利次数、连续亏损次数和最大回撤。

       请注意,上述描述是简化版本,源代码中包含具体的函数调用和逻辑判断。在实际应用中,需要根据特定的交易环境和市场数据进行调整。

相关推荐
一周热点