1.如何从源代码理解Windows内核的专题源码实现机理?
2.数据结构专题(三) | iVox (Faster-Lio): 智行者高博团队开源的增量式稀疏体素结构 & 源码解析
如何从源代码理解Windows内核的实现机理?
深入解析Windows内核的奥秘,本书以操作系统原理为基石,专题源码揭示了Windows如何构建现代操作系统的专题源码基石,如strong>进程管理、专题源码线程并发、专题源码物理和虚拟内存管理,专题源码怀旧手游源码以及Windows I/O模型的专题源码实现。作者采用Windows Research Kernel (wrk) 的专题源码源代码作为讲解的参照,让读者亲身体验庞大复杂系统如何在x处理器上运行的专题源码逻辑。
内容设计上,专题源码本书聚焦于Windows内核的专题源码核心组件,同时兼顾操作系统整体性,专题源码涉及strong>存储体系、专题源码网络架构和Windows环境子系统等关键组件,专题源码它们虽非内核模块,专题源码但对Windows的运行至关重要。而对于Windows Server 以后内核的演变和发展,书中也有所涵盖。
尽管书中详尽解析了Windows的代码实现,但并非逐行解读wrk源代码。每个技术专题都有框架图和深入细节分析,负24源码旨在让读者既能把握技术全貌,又理解关键实现。Windows作为历史悠久的操作系统,市面上资料众多,但本书首次从源代码层面解析Windows底层工作原理,部分内容是首次以文字形式公开。 本书的目标是满足对Windows好奇者了解核心机制的需求,同时也为计算机专业的学生、教师和系统软件工程师提供快速理解和掌握Windows先进系统技术的途径,以及编写高效软件的整站小说源码灵感。书中还附带实用工具,通过它们,读者可以直观观察内核信息,甚至跟踪系统动态,这些工具可通过互联网获取。数据结构专题(三) | iVox (Faster-Lio): 智行者高博团队开源的增量式稀疏体素结构 & 源码解析
在年初,智行者高博团队和清华大学联合发表了Faster-Lio的工作,该成果收录于IEEE RA-Letters,其开源代码展示了如何通过增量式稀疏体素结构iVox,提升Lidar-inertial Odometry(LIO)的vb中控台源码算法效率。相较于MaRS-Lab的FastLio2,Faster-Lio在保持精度的同时,得益于iVox的设计,尤其是在增删操作上的高效性,显著减少了维护local map和查询近邻的时间。
高博在知乎文章中详细解读了Faster-Lio,特别是iVox的创新设计。我们从数据结构的角度出发,通过简化的方式解释iVox:首先,利用哈希表(如C++的OpenPortalServer源码下载std::unordered_map)将体素空间坐标作为key,通过精心设计的空间哈希函数映射到有限的索引空间,实现快速的增删操作。哈希表的优化和抗冲突设计使得碰撞概率极低,即使有冲突,也能快速忽略。
此外,iVox采用了伪希尔伯特曲线(PHC)来组织体素,这种曲线将高维空间划分为一系列单元,并通过分段曲线连接,便于一维空间索引。尽管希尔伯特曲线是理想化的,但在工程实践中,PHC在接近填充空间的同时,保持了可接受的实现复杂度。
Faster-Lio的源码解析显示,核心在于IVox类,其中grids_map_和grids_cache_是关键数据结构。AddPoints()负责增量点的添加,通过哈希查找确保高效,而GetClosestPoint()则通过kNN搜索找到最近邻。
尽管论文与代码存在一些差异,如体素过时删除策略,但整体上,iVox的设计思路清晰,哈希表和空间组织策略的结合使得其在实际应用中表现出色。然而,对于体素内点的处理,实际工程中可能更倾向于简化,例如通过体素降采样和八叉树结构,这些方法在某些场景下可能会比PHC更易于实现。
最后,作者WGH无疆强调,iVox是简单实用的解决方案,但希尔伯特曲线在工程实践中的优势可能有限,尤其是在点数不多的情况下。未来,他们将探讨其他类似的工作,如CMU的Super Odometry,其中可能结合了哈希表和八叉树。欢迎大家继续关注和交流。