皮皮网

【内测分发网源码】【android 词典源码】【数字点卡 源码】skimage源码

2024-11-19 02:16:53 来源:vb 画笔 源码

1.有一张人脸的侧脸像,如何用python及相关的库来计算人脸转过的角度。
2.Caffe学习(二) —— 下载、编译和安装Caffe(源码安装方式)
3.常用的十大python图像处理工具

skimage源码

有一张人脸的侧脸像,如何用python及相关的库来计算人脸转过的角度。

       这个很难办到,内测分发网源码不过可以通过判断关键点的特点进行判断,但是准确率不高

       前言

       很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的android 词典源码我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在行代码以内简单地实现人脸识别。

       一点区分

       对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实,人脸检测解决的数字点卡 源码问题是确定一张图上有木有人脸,而人脸识别解决的问题是这个脸是谁的。可以说人脸检测是是人识别的前期工作。今天我们要做的是人脸识别。

       所用工具

       Anaconda 2——Python 2

       Dlib

       scikit-image

       Dlib

       对于今天要用到的主要工具,还是有必要多说几句的。Dlib是基于现代C++的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。Dlib内容涵盖机器学习、图像处理、数值算法、easyui tree 源码数据压缩等等,涉猎甚广。更重要的是,Dlib的文档非常完善,例子非常丰富。就像很多库一样,Dlib也提供了Python的接口,安装非常简单,用pip只需要一句即可:

       pip install dlib

       上面需要用到的scikit-image同样只是需要这么一句:

       pip install scikit-image

       注:如果用pip install dlib安装失败的话,那安装起来就比较麻烦了。错误提示很详细,volley 源码下载按照错误提示一步步走就行了。

       人脸识别

       之所以用Dlib来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。今天我们主要目的是实现,而不是深究原理。感兴趣的同学可以到官网查看源码以及实现的参考文献。今天的例子既然代码不超过行,其实是没啥难度的。有难度的东西都在源码和论文里。

       首先先通过文件树看一下今天需要用到的东西:

       准备了六个候选人的放在candidate-faces文件夹中,然后需要识别的人脸test.jpg。我们的工作就是要检测到test.jpg中的人脸,然后判断她到底是候选人中的谁。另外的girl-face-rec.py是我们的python脚本。shape_predictor__face_landmarks.dat是已经训练好的人脸关键点检测器。dlib_face_recognition_resnet_model_v1.dat是训练好的ResNet人脸识别模型。ResNet是何凯明在微软的时候提出的深度残差网络,获得了 ImageNet 冠军,通过让网络对残差进行学习,在深度和精度上做到了比

       CNN 更加强大。

       1. 前期准备

       shape_predictor__face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat都可以在这里找到。

       然后准备几个人的人脸作为候选人脸,最好是正脸。放到candidate-faces文件夹中。

       本文这里准备的是六张,如下:

       她们分别是

       然后准备四张需要识别的人脸图像,其实一张就够了,这里只是要看看不同的情况:

       可以看到前两张和候选文件中的本人看起来还是差别不小的,第三张是候选人中的原图,第四张微微侧脸,而且右侧有阴影。

       2.识别流程

       数据准备完毕,接下来就是代码了。识别的大致流程是这样的:

       3.代码

       代码不做过多解释,因为已经注释的非常完善了。以下是girl-face-rec.py

       # -*- coding: UTF-8 -*-

       import sys,os,dlib,glob,numpy

       from skimage import io

       if len(sys.argv) != 5:

       print "请检查参数是否正确"

       exit()

       # 1.人脸关键点检测器

       predictor_path = sys.argv[1]

       # 2.人脸识别模型

       face_rec_model_path = sys.argv[2]

       # 3.候选人脸文件夹

       faces_folder_path = sys.argv[3]

       # 4.需识别的人脸

       img_path = sys.argv[4]

       # 1.加载正脸检测器

       detector = dlib.get_frontal_face_detector()

       # 2.加载人脸关键点检测器

       sp = dlib.shape_predictor(predictor_path)

       # 3. 加载人脸识别模型

       facerec = dlib.face_recognition_model_v1(face_rec_model_path)

       # win = dlib.image_window()

       # 候选人脸描述子list

       descriptors = []

       # 对文件夹下的每一个人脸进行:

       # 1.人脸检测

       # 2.关键点检测

       # 3.描述子提取

       for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):

       print("Processing file: { }".format(f))

       img = io.imread(f)

       #win.clear_overlay()

       #win.set_image(img)

       # 1.人脸检测

       dets = detector(img, 1)

       print("Number of faces detected: { }".format(len(dets)))

       for k, d in enumerate(dets):

       # 2.关键点检测

       shape = sp(img, d)

       # 画出人脸区域和和关键点

       # win.clear_overlay()

       # win.add_overlay(d)

       # win.add_overlay(shape)

       # 3.描述子提取,D向量

       face_descriptor = facerec.compute_face_descriptor(img, shape)

       # 转换为numpy array

       v = numpy.array(face_descriptor)

       descriptors.append(v)

       # 对需识别人脸进行同样处理

       # 提取描述子,不再注释

       img = io.imread(img_path)

       dets = detector(img, 1)

       dist = []

       for k, d in enumerate(dets):

       shape = sp(img, d)

       face_descriptor = facerec.compute_face_descriptor(img, shape)

       d_test = numpy.array(face_descriptor)

       # 计算欧式距离

       for i in descriptors:

       dist_ = numpy.linalg.norm(i-d_test)

       dist.append(dist_)

       # 候选人名单

       candidate = ['Unknown1','Unknown2','Shishi','Unknown4','Bingbing','Feifei']

       # 候选人和距离组成一个dict

       c_d = dict(zip(candidate,dist))

       cd_sorted = sorted(c_d.iteritems(), key=lambda d:d[1])

       print "\n The person is: ",cd_sorted[0][0]

       dlib.hit_enter_to_continue()

       4.运行结果

       我们在.py所在的文件夹下打开命令行,运行如下命令

       python girl-face-rec.py 1.dat 2.dat ./candidate-faecs test1.jpg

       由于shape_predictor__face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat名字实在太长,所以我把它们重命名为1.dat和2.dat。

       运行结果如下:

       The person is Bingbing。

       记忆力不好的同学可以翻上去看看test1.jpg是谁的。有兴趣的话可以把四张测试都运行下试试。

       这里需要说明的是,前三张图输出结果都是非常理想的。但是第四张测试的输出结果是候选人4。对比一下两张可以很容易发现混淆的原因。

       机器毕竟不是人,机器的智能还需要人来提升。

       有兴趣的同学可以继续深入研究如何提升识别的准确率。比如每个人的候选用多张,然后对比和每个人距离的平均值之类的。全凭自己了。

Caffe学习(二) —— 下载、编译和安装Caffe(源码安装方式)

       采用caffe源码编译安装方式说明

       此方法仅适用于编译CPU支持版本的Caffe。推荐通过Git下载以获取更新及查看历史变更。

       主机环境配置

       系统环境:Ubuntu .

       步骤一:安装依赖库与Python 2.7

       步骤二:安装CUDA(注意:虽然仅编译CPU版本的Caffe,但安装CUDA时可能会遇到编译错误,需确保环境兼容性)

       编译Caffe

       步骤一:修改Make.config文件

       具体配置说明请参考我的另一篇博客("Hello小崔:caffe(master分支)Makefile.config分析")

       步骤二:执行make编译

       测试已通过

       步骤三:解决编译过程中的错误

       错误实例:ImportError: No module named skimage.io

       解决方法:执行sudo apt-get install python-skimage

       错误实例:ImportError: No module named google.protobuf.internal

       解决方法:执行sudo apt-get install python-protobuf

       更多错误解决办法,请参阅另一篇博客("Hello小崔:caffe编译报错解决记录")

常用的十大python图像处理工具

       åŽŸæ–‡æ ‡é¢˜ï¼š Python image manipulation tools.

       ä½œè€… | Parul Pandey

       ç¿»è¯‘ | 安其罗乔尔、JimmyHua

       ä»Šå¤©ï¼Œåœ¨æˆ‘们的世界里充满了数据,图像成为构成这些数据的重要组成部分。但无论是用于何种用途,这些图像都需要进行处理。图像处理就是分析和处理数字图像的过程,主要旨在提高其质量或从中提取一些信息,然后可以将其用于某种用途。

       å›¾åƒå¤„理中的常见任务包括显示图像,基本操作如裁剪、翻转、旋转等,图像分割,分类和特征提取,图像恢复和图像识别。Python成为这种图像处理任务是一个恰当选择,这是因为它作为一种科学编程语言正在日益普及,并且在其生态系统中免费提供许多最先进的图像处理工具供大家使用。

       è®©æˆ‘们看一下可以用于图像处理任务中的常用 Python 库有哪些吧。

       1.scikit-image

       scikit-image是一个开源的Python包,适用于numpy数组。它实现了用于研究,教育和工业应用的算法和实用工具。即使是那些刚接触Python生态系统的人,它也是一个相当简单直接的库。此代码是由活跃的志愿者社区编写的,具有高质量和同行评审的性质。

       èµ„源

       æ–‡æ¡£é‡Œè®°å½•äº†ä¸°å¯Œçš„例子和实际用例,阅读下面的文档:

       /abidrahmank/OpenCV2-Python-Tutorials

       ç”¨æ³•

       ä¸‹é¢æ˜¯ä¸€ä¸ªä¾‹å­ï¼Œå±•ç¤ºäº†OpenCV-Python使用金字塔方法创建一个名为“Orapple”的新水果图像融合的功能。

       6. SimpleCV

       SimpleCV 也是一个用于构建计算机视觉应用程序的开源框架。有了它,你就可以访问几个高性能的计算机视觉库,如OpenCV,而且不需要先学习了解位深度、文件格式、颜色空间等。

       å®ƒçš„学习曲线大大小于OpenCV,正如它们的口号所说“计算机视觉变得简单”。一些支持SimpleCV的观点有:

       å³ä½¿æ˜¯åˆå­¦è€…也可以编写简单的机器视觉测试摄像机、视频文件、图像和视频流都是可互操作的资源

       å®˜æ–¹æ–‡æ¡£éžå¸¸å®¹æ˜“理解,而且有大量的例子和使用案例去学习:

       /hhatto/pgmagick

       ç”¨æ³•

       ä½¿ç”¨pgmagick可以进行的图像处理活动很少,比如:

       å›¾åƒç¼©æ”¾

       è¾¹ç¼˜æå–

       . Pycairo

       Pycairo是图像处理库cairo的一组Python捆绑。Cairo是一个用于绘制矢量图形的2D图形库。矢量图形很有趣,因为它们在调整大小或转换时不会失去清晰度 。Pycairo是cairo的一组绑定,可用于从Python调用cairo命令。

       èµ„源

       Pycairo的GitHub库是一个很好的资源,有关于安装和使用的详细说明。还有一个入门指南,其中有一个关于Pycairo的简短教程。

       åº“:/pygobject/pycairo指南:https://pycairo.readthedocs.io/en/latest/tutorial.html用法

       ä½¿ç”¨Pycairo绘制线条、基本形状和径向梯度:

       æ€»ç»“

       æœ‰ä¸€äº›æœ‰ç”¨ä¸”免费的Python图像处理库可以使用,有的是众所周知的,有的可能对你来说是新的,试着多去了解它们。