1.VINS-Mono:原理深剖+白板从零手推公式+源码逐行精讲!源码
2.ROS开源项目:(一)中文语音交互系统ROSECHO (二)教学级别无人车Tianracer
3.白话VINS-Mono之外参标定(二)
4.三国志11威力加强版的源码强迫单挑修改器
VINS-Mono:原理深剖+白板从零手推公式+源码逐行精讲!
自动驾驶领域在年呈现出快速发展的源码态势,各大创业公司纷纷宣布获得大额融资。源码1月日,源码文远知行完成B轮3.1亿美元融资;1月日,源码java扫码源码滴滴获得3亿美元融资;2月8日,源码小马智行获得1亿美元C+轮融资;3月日,源码Momenta完成C轮总计5亿美元的源码融资;4月日,大疆创新推出智能驾驶业务品牌“大疆车载”,源码向汽车企业提供自动驾驶解决方案;4月日,源码小鹏汽车发布搭载激光雷达的源码智能汽车小鹏P5,成为全球第一款量产的源码激光雷达智能汽车;4月日,图森未来在美股上市,源码被称为“全球自动驾驶第一股”;4月日,源码华为和北汽合作实现上海城区通勤无干预自动驾驶,成为全球唯一城市通勤自动驾驶量产车。
在自动驾驶、无人机、增强现实、机器人导航等技术领域中,定位和建图(SLAM)发挥着至关重要的作用,而视觉惯性里程计(VIO)作为SLAM算法中的一个重要分支,其理论复杂度较高。对VIO的掌握能力将直接影响到SLAM从业者的专业水平。VINS-Mono是由香港科技大学飞行机器人实验室(沈邵劼团队)在年开源的知名单目VIO算法。该算法由第一作者秦通(华为天才少年)提出,并在年获得IEEE Transactions on Robotics期刊的最佳论文奖。VINS-Mono使用单目相机和惯性测量单元(IMU)实现了视觉和惯性联合状态估计,同时能够估计传感器外参、IMU零偏以及传感器时延,是一款经典且优秀的VIO框架。
VINS-Mono在室内、室外大尺度以及高速飞行的无人机场景中均表现出色。在手机AR应用中,该算法优于当前最先进的Google Tango效果。同时,VINS-Mono也是VINS-Fusion算法的基础,应用于汽车SLAM时同样展现出高精度和稳定性。传奇冰雪版源码
在自动驾驶、无人机、增强现实、机器人导航等领域的岗位中,掌握VINS-Mono算法成为了关键技能之一。为此,计算机视觉life团队推出了独家课程《VINS-Mono:原理深剖+白板从零手推公式+源码逐行精讲》。该课程通过详细的步骤解读、疑难问题解析、结合作者回复的issue理解,帮助学员深入掌握VINS-Mono背后的原理。课程内容覆盖从基础理论到复杂公式的推导,通过白板从零开始手推公式的方式,使学员能够理解复杂公式的形成过程,从而真正掌握VINS-Mono的原理。课程价格根据购买时间调整,购买越晚价格越高。如有疑问,学员可加入QQ群()咨询,购买成功后会自动显示内部答疑群。
ROS开源项目:(一)中文语音交互系统ROSECHO (二)教学级别无人车Tianracer
开发之路永无止境,往往在最后期限的白板上写着的计划,往往只是一份空想。年初时,我定下了两个目标,计划在年末完成,然而时间在拖延中流逝,直到如今,我才发现,真正的开源精神并非一个人的单打独斗,而是众人协作的火焰。
记得一年前,我四处奔波,从开源社区汲取养分,同时也渴望贡献出自己的力量。然而,回顾过去,我却发现并没有做出任何贡献。线上介入指标源码这次,我希望能够集结各路伙伴,如果有志于参与开源项目,我们能共同打造一个GitHub上的百星、千星项目。几位资深程序员已经搭建好了基础,硬件改进较多,但程序完善程度未达预期。我们期望有更多的年轻朋友加入我们,与我们一起学习软件的版本控制、代码规范和团队协作,共同完成复杂的机器人项目,实现成长与蜕变。
(一)中文语音交互系统ROSECHO
ROSECHO的GitHub源码库已准备好,欢迎先star再深入阅读。此代码遵循BSD开源协议。
详细中文介绍文档
面对智能音箱市场,许多人或许会质疑我们的团队为何要涉足这个领域。然而,故事并非如此简单。在年,我们计划为一个大型展厅打造讲解机器人,采用流行于Android系统的接待引导机器人,其语音交互功能本无问题,但当时的挑战在于,尚未有集成cartographer在数千平米展厅中进行建图导航的方案。因此,我们决定打造一款完全基于ROS的讲解机器人。市场上虽然有众多智能音箱,但缺乏适用于ROS二次开发的产品。在科大讯飞一位大佬的介绍下,我们选择了AIUI方案,虽然开发难度大,但高度定制化,非常适合我们这样的开发团队。于是,我们主要任务转变为开发一款能够在ROS下驱动的智能音箱,ROSECHO便由此诞生。uniapp公众号源码
第一版智能音箱在年4月问世,包含W的大喇叭、6环麦克风,以及ROS主控制器,下方控制了一个云迹科技的水滴底盘。了解过ROS星火计划进阶课程的朋友大概知道,课程中的大作业之一是语音命令移动机器人端茶倒水,而我们的任务相当于完成了一个加强版的大作业。
整个机器人在年7月完成,音箱分散到身体各个部分,环麦位于头顶,喇叭置于身体两侧。其他传感器、执行机构、决策、定位导航均基于ROS,定制了条特定问答,调试的机器人在场馆中行走上下坡不抖动,定位准确,7*小时工作稳定。音箱在大机器人上使用效果出色,主要得益于讯飞的降噪和回声消除技术,使得远场对话和全双工对话得以实现。社区中许多小伙伴也尝试了软核解决方案,但由于环境限制较大。于是,我们决定将音箱从大家伙改为普通智能音箱大小,通电即为智能音箱,USB接入ROS后,只需启动launch,即可接收语音识别结果,发送TTS语料,配置网络、接收唤醒角度等。
这次体验深刻地让我认识到,做大容易做小难。过完春节后,年8月ROS暑期夏令营期间,周瑜 spring源码 笔记我们做了N款外壳,测试了M种喇叭,贴了P版外围电路,程序则改动不大。主要是由于时间有限,无法进行更多改进。样品均为手工制作,音质上,7w的喇叭配有一个无源辐射板,对于从森海HD入门的人来说,音质虽有瑕疵,但足以满足日常使用。
之前在想法中发布了一个使用视频,大家可参考运行效果。
ROSECHO基本情况介绍完毕,如何开始呢?
从零开始:推荐给手中已有讯飞AIUI评估板的小伙伴,记住,评估板而非麦克风降噪板(外观相似,简单区分是评估板售价元,降噪板元)。手头的评估板可通过3.5mm接口连接普通电脑音箱,再准备一根USB转转换头连接评估板DB9接口。后面需要根据实际串口修改udev规则,理论上可配合ROSECHO软件使用。硬件工作量较大,还需包含移动机器人所需机械设计、电气改造等。好处是拥有AIUI后台,可以定制云端语料和技能,但这又是另一个领域的能力,也不是三下五除二能完成的。
从ROSECHO开始:直接购买ROSECHO,首发的十台会附赠ROS2GO,只需连接自带电源并用USB线连接电脑,配置无线SSID和密码即可。连接方便,我们维护云端语料,人设为智能机器人管家,大家只需关注如何利用识别后的词句控制机器人和进行应答。云端问答AIUI处理,一些自定义问答可在本地程序中处理,务必联网,因为语音识别本身需要网络。具体软件启动和简单demo请查看GitHub软件库的说明。
然后做什么:要实现智能语音交互功能的移动机器人,需要对ROS中的actionlib非常熟悉。我们提供了简单的demo,可以控制机器人在turtlebot stage仿真环境中根据语音指令在两点之间移动,也可以根据唤醒方位进行旋转。之后还需增加音箱的TF变换。
大机器人中的状态机采用层次状态机(Hierarchical state machines),适用于移动机器人的编程,框架准备开源,方便大家开发自己的智能移动机器人策略。参考下面链接,希望深入了解也可以购买译本,肯定是比ROS By Example中的Smach状态机更适合商用级产品开发。
还计划做一套简单的语音遥控指令集,机器人问答库,在iflyos中构建适合机器人的技能库。何时能完成尚不确定,大家一起加油!
(二)教学级别无人车Tianracer
GitHub源码库已准备就绪,欢迎先star再深入阅读。遵循Hypha Racecar的GPLv3协议。
这是最近更新的详细使用手册。相比ROSECHO,Tianracer的基本功能均已完成,至少可以拿来学习建图导航,了解SLAM。
Tianracer是一个经过长时间准备的开源项目,年从林浩鋕手中接过Hypha Racecar后,希望将项目发扬光大。这两年改进了软件框架、周边硬件、机械结构,并增加了新的建图算法,但仍有大量工作待完成。这两个月在知乎想法和微信朋友圈分享了项目的进展,经历了多次迭代,现在大致分为入门、标准、高配三个版本。三个版本的软件统一,可通过环境变量更改设置。
最近整个项目从Tianbot Racecar更名为TianRacer,经过长时间探索,终于实现了合理的传感器与处理器配置。相比Hypha Racecar,处理器从Odroid XU4更改为NVIDIA在上半年推出的Jetson Nano,车前方增加了广角摄像头,利用Nano的深度学习加速,可以接近实时处理图像数据。相比之前的单线激光,广角摄像头大大扩展了后续可实现的功能。
TianRacer基本使用Python编写,从底层驱动到遥控等,目的是方便大家学习和二次开发。同时集成了cartographer和vins-fusion启动文件,可以尝试新的激光与视觉SLAM,基于Nano的深度学习物体识别等也是可以直接运行的。但目前功能尚未有机整合。
从零开始搭建:TianRacer搭建可能难度较大,不仅需要RC竞速车的老玩家进行机械电子改装,还需要对ROS熟悉并修改软件以进行适配,同时可能需要嵌入式程序员的帮助。对于主要关心搭建的朋友,可以参考小林的Hypha Racecar和JetRacer Tamiya版本的搭建指南。
从TianRacer开始:这批开发版本的无人竞速车附赠搭好环境的ROS2GO,TianRacer本身有开机自启功能,利用ROS2GO加上USB线对车体进行网络配置,就可以远程编程和调试。仔细参考提供的TianRacer看云文档(文档积极更新),大部分车体自带的功能都可以实现,包括但不限于建图、定位、导航、识别等。
然后做什么:利用TianRacer学习无人车的基础框架,还可以通过JupyterLab学习Jetson Nano的深度学习算法。未来计划将交通标识识别、行人和车辆检测、车道线检测等无人车基础功能融合,但不确定Jetson Nano的算力是否足够。目标是在校园内进行低成本的无人车竞速比赛,希望像CMU的Mobot室外巡线比赛一样持续发展,至今已举办届。
这个视频是搬运自YouTube。大家可深入了解非结构环境下的导航。对于不清楚结构化环境与非结构化环境的朋友,CMU和恩智浦的比赛完美诠释了两者之间的区别。
一起来玩耍吧!
在开源社区协作方面,我们也是第一次尝试,对于松散的协同开发经验不足,希望参与或组织过大型开源项目的朋友们加入我们,一起努力。有兴趣的朋友可以留言或私信。
前几日与朋友们闲聊时,想起几年前高翔博士赞助一锅粥(orb-ygz-slam)1万元时,我也只能提供支持。这次真心希望可以贡献出代码,实现实实在在的贡献。
年年底发布了开发者申请价格,但数量有限,早已连送带卖售罄。年又有几十位爱好者填写了问卷,忘记查阅。每年的双十一双十二我们都会有优惠活动,感谢大家的关注。
白话VINS-Mono之外参标定(二)
在深入探讨Vins-mono系统中的外参标定部分之前,我们先回顾一下上篇文章中预积分的基本概念。接下来,我们将从实际应用出发,深入解析Vins-mono系统中关于外参标定的原理与源码。
Vins-mono作为紧耦合视觉IMU系统,在实现中通过在SLAM过程中进行相机与IMU的标定,以应对没有标定信息的情况。这种设计的一大优势在于系统能够动态计算相机与IMU之间的标定值。尽管标定过程并非绝对精确,但在后续的后端优化中会持续调整这些值。
配置文件中支持输入精确的外参标定值,通过设置config.yaml中的ESTIMATE_ESTRINSIC参数来决定。根据yaml设置,有三种情况可供选择:计算相机(Camera)坐标系到IMU坐标系的相对旋转矩阵。这一过程主要在CalibrationExRotation函数中实现。
在Vins-mono中,标定过程是独立于初始化的一部分,但它是系统启动前的关键步骤。在processimg函数中,初始化之前,即真正的初始化前,需要执行CalibrationExRotation函数。
虽然Vins-mono文章中并未引入新的在线标定相机与IMU方法,而是基于文献([8])中提出的“monocular视觉惯性状态估计的在线初始化和相机IMU外参标定”。基于Vins-mono的代码实现,我们重新整理了文献中Fig. 3的图,并将其转化为图2,旨在从理论到代码详细解析标定过程。
结合图2,相邻相机关键帧对应的pose可以通过两种方式来构建方程:使用八点法(solveRelativeR)和结合已知的[公式]标定转换(solveRelativeRT)。理论上,通过假设相对旋转量为[公式],可以构建方程并求解。为了深入理解求解过程,我们将参考文献中的式子4~9。
在求解过程中,考虑到使用对极约束算法时不可避免的匹配错误(outlier),在A矩阵中加入权重计算,以提高在线标定结果的鲁棒性。加权计算方式近似于Huber norm计算(参考式8、9)。
在CalibrationExRotation核心函数中,实现流程遵循上述式子4~9的步骤。solveRelativeR与solveRelativeRT函数之间的区别在于,后者在多个判断内点个数操作中有所不同。重要的是,ric.inverse()* delta_q_imu * ric这一表达式将式4转换为[公式],通过在循环中不断计算相邻帧特征点对应变换,逐渐构建Ax=0形式的方程。
对于求解Ax=0问题的SVD分解,它是在矩阵非方阵时的特征值分解拓展,可以提取矩阵的主要特征。通过SVD分解,我们可以将问题转化为求解特定的特征值和特征向量,进而求解方程。
在理解SVD分解为何可以求解Ax=0问题时,关键在于其几何意义。SVD分解将任意矩阵通过一系列旋转和平移转换为对角矩阵,其中的奇异值表示椭球体轴的长度。通过最小奇异值,我们可以求解出最优解,即Ax=0的非零解。
综上所述,Vins-mono系统中的外参标定过程通过一系列理论解析和代码实现,确保了相机与IMU之间标定值的动态调整和优化。通过对关键步骤的深入理解,我们可以更好地掌握SLAM系统中这一重要模块的工作原理。
三国志威力加强版的强迫单挑修改器
建议不用修改器,正常玩也能提高单挑概率的,用修改器没什么意思
单挑一般在游戏中触发的几率相当小(不用修改器的前提下)
首先,选择2~3人,武力数值要拉开档次,但最低不要低于目标武将武力,否则容易被秒.
该2~3人最好为义兄弟或亲爱武将,容易相互支援(比如刘备和关羽,法正和黄忠)
1:武力总和越低,应战率越高,以自己水平衡量,以确定能挑赢为准.
2:己方部队越多于目标部队,应战几率越高.
3:对方部队处于异常状态(混乱,伪报),则应战几率越高.
然后点选武力最低的一位
有个三四次以后对方一般都会接下的
由于第一个武将武力较弱,需要撑到其他武将出场,因此最好点选防御
如果是义兄弟(姐妹)或者亲爱武将,或者相性相近,很快就会来支援的
单条就变成了群架,一般拿下不成问题
如果在你的城周围修建一个太鼓台的话,也可以提高单挑几率,它所影响的范围大约是3~5格
对于武力较高的武将,一定要三人一起上
在单挑时最好能用要害(两格气),无双(三格气),伪退(需弓箭,十五回合以后)
将对方武将击伤.也可增加俘获几率.
在单挑之前烧伤也可以.
对于一些武力低的文官
多派几个武将单兵出城单条
之结果....也就不用看了
然后再修一座符节台,就等着电脑给你送人吧......
最后,有时骑兵战法也可以触发强制单条的.
不过一旦单挑用得多了,游戏难度自然不大,
如果新手可以用一下.我现在已经都把单条封禁了.