【梦幻昆仑的源码】【审计源码怎么设置】【目录型 相册源码】x源码

2024-11-08 00:28:54 来源:网址大全SEO源码 分类:焦点

1.Vert.x 源码解析(4.x)——Context源码解析
2.python3和python2的区别
3.Vert.x 源码解析(4.x)——Future源码解析
4.PolarDB-X 源码解读(七):私有协议连接的源码一生(CN篇)

x源码

Vert.x 源码解析(4.x)——Context源码解析

       Vert.x 4.x 源码深度解析:Context核心概念详解

       Vert.x 通过Context这一核心机制,解决了多线程环境下的源码资源管理和状态维护难题。Context在异步编程中扮演着协调者角色,源码确保线程安全的源码资源访问和有序的异步操作。本文将深入剖析Context的源码源码结构,包括其接口设计、源码梦幻昆仑的源码关键实现以及在Vert.x中的源码具体应用。

       Context源代码解析

       Context接口定义了基础的源码事件处理功能,如立即执行和阻塞任务。源码ContextInternal扩展了Context,源码包含内部方法和功能,源码通常开发者无需直接接触,源码如获取当前线程的源码Context。在vertx的源码beginDispatch和endDispatch方法中,Context的源码切换策略取决于线程类型,Vertx线程会使用上下文切换,而非Vertx线程则依赖ThreadLocal。

       ContextBase是ContextInternal的实现类,负责执行耗时任务,内部包含TaskQueue来管理任务顺序。WorkerContext和EventLoopContext分别对应工作线程和EventLoop线程的执行策略,它们通过execute()、runOnContext()和emit()方法处理任务,同时监控性能。

       Context的创建和获取贯穿于Vert.x的生命周期,它在DeploymentManager的doDeploy方法中被调用,如NetServer和NetClient等组件的底层实现也依赖于Context来处理网络通信。

       额外说明

       Context与线程并非直接绑定,而是根据场景动态管理。部署时创建新Context,非部署时优先获取Thread和ThreadLocal中的Context。当执行异步任务时,当前线程的Context会被暂时替换,任务完成后才恢复。源码中已加入详细注释,如需获取完整注释版本,可联系作者。

       Context的审计源码怎么设置重要性在于其在Vert.x的各个层面如服务器部署、EventBus通信中不可或缺,它负责维护线程同步与异步任务的执行顺序,是异步编程中不可或缺的基石。理解Context的实现,有助于更好地利用Vert.x进行高效开发。

python3和python2的区别

       ä»¥ä¸‹åˆ—举了几个重要的改变:

       1.编码      

       Py3.X源码文件默认使用utf-8编码,这就使得以下代码是合法的:    

>>> ä¸­å›½ = '中国'

       >>> print(中国)

           ä¸­å›½

       2.输入函数改变了,删除了raw_input()函数,用input()函数代替:

2.X:guess = int(raw_input('Enter an integer : ')) # è¯»å–键盘输入的方法

       3.X:guess = int(input('Enter an integer : '))

       3.整型除法返回浮点数,要得到整型结果,请使用a//b

       4.去除print语句,加入print()函数实现相同的功能。同样的还有 exec语句,已经改为exec()函数。

       5.数据类型

       1)Py3.X去除了long类型,现在只有一种整型——int,但它的行为就像2.X版本的long  

       2)新增了bytes类型,对应于2.X版本的八位串,定义一个bytes字面量的方法如下:    

       str对象和bytes对象可以使用.encode() (str -> bytes) or .decode() (bytes -> str)方法相互转化。

       æ›´è¯¦ç»†çš„变化可以参考:blogs.com/codingmylife/archive////.html

Vert.x 源码解析(4.x)——Future源码解析

       在现代软件开发中,异步编程的重要性日益凸显,提升并发性能并处理大量并行操作。Vert.x,作为一款基于事件驱动和非阻塞设计的异步框架,提供了丰富的工具简化异步编程。本文将深入解析Vert.x 4.x版本的Future源码,理解其关键类和功能。

       1. 异步核心

       Vert.x的核心在于FutureImpl和PromiseImpl,它们是实现异步操作的关键。AsyncResult是通用接口,用于表示异步操作的结果,包含成功值或失败异常。

       2. Future类详解

       Future扩展了AsyncResult,提供了组合操作如join、any、all和map等功能。内部的FutureInternal主要负责添加监听器,FutureBase负责执行监听器和转换函数。

       具体来说,FutureImpl的onComplete方法接收一个handler,任务完成后执行,而tryComplete则在异步操作有结果时触发,最终调用用户指定的handler。

       相比之下,Promise允许用户手动设置异步结果,PromiseImpl继承自FutureImpl,并增加了context获取功能。

       3. 实例与源码分析

       通过简单的入门实例,如独立使用Future,我们可以看到Vert.x如何通过创建PromiseImpl获取Future。源码分析显示,目录型 相册源码Promise.future获取Future,OnComplete用于添加监听,而complete方法则用于设置值并通知监听器。

       4. 深入源码

       在源码层面,addListener和emitSuccess方法在OnComplete中扮演重要角色。而complete方法,特别是tryComplete,是设置值并触发监听的关键。

       5. 总结

       总的来说,理解Vert.x中的Future,就是创建PromiseImpl获取Future,通过OnComplete添加监听器,然后通过Promise的complete方法设置值并通知监听器。后续还将深入探讨其他Future实现类,如all、any和map的原理。

PolarDB-X 源码解读(七):私有协议连接的一生(CN篇)

       通过前文的介绍,大家基本了解了一条SQL在polardbx-sql中的解析和执行流程。由于polardbx-sql是无状态的计算节点,真正数据需要从存储节点传输到计算节点,这部分工作由私有协议完成。本文将详细介绍从发送请求到存储节点,接收返回数据的完整流程,重点在于私有协议连接的生命周期和关键代码解析。

       概述

       为了提高数据节点本地计算能力,同时减少网络数据传输量,计算节点会尽可能下推计算内容。一个逻辑表可能需要多个物理分片,因此计算节点与存储节点的请求会话数量会随着分片数增加而增加。传统MySQL协议+连接池架构已不能满足PolarDB-X的需求,因此私有协议在这一需求场景下应运而生。

       如图所示,私有协议采用连接与会话分离的RPC协议设计理念,支持多个会话在同一个TCP通道中并行运行,具备流控机制、全双工响应式工作模式和高吞吐、可扩展等特性。小程序领取源码

       更多关于私有协议解决上述问题的设计详情,可以参考《PolarDB-X私有协议设计》一文。本文主要从代码层面详细描述私有协议的工作流程。

       我们将从计算节点和存储节点两个角度完整解析私有协议连接的生命周期。篇幅限制,本文仅关注计算节点上私有协议的处理,存储节点部分将在后续文章中详细说明。

       计算节点

       计算节点作为私有协议的客户端,负责发送下推请求,并接收返回的数据。

       网络层框架

       PolarDB-X私有协议网络层采用定制化Reactor框架实现,基于Java的NIO,改进自polardbx-sql中的Reactor框架。网络层初始化时,设置CPU核心数的2倍(上限为)作为NIOProcessor,每个Reactor使用独立的堆外内存池作为收发包缓冲,总缓冲内存大小限制为堆内存大小的%。

       NIO接收的包直接调用注册的处理函数,发送数据仅写入send buf,网络写入由单独线程完成。线程优先写入TCP send buf,当无法写入时,注册OP_WRITE事件等待可写后再写入剩余内容。

       数据包的编码和解码在NIOClient中实现。为实现最佳性能,解包流程直接在堆外内存上进行,使用protobuf对流直接解析,将结果放入堆内。堆外内存被切分为KB chunk,每个Reactor独占一个chunk,连续解析和复用,最大化接收、解析效率。对于特大包,额外构造堆内大buffer接收和解析,回退标志在定时任务中重置,连续s无超大包时释放堆内内存,无广告接口源码恢复高性能堆外KB buffer接收。

       请求发送集成在NIOClient中,writer优先尝试写入发送缓冲队列尾部的buffer,不足时新申请buffer填充并追加到队尾。buffer来自预分配的堆外缓冲池,超过chunk大小时分配堆内buf进行序列化。

       同时,NIOClient负责TCP连接的建立和断开资源释放,作为独立的底层网络资源管理实现。

       连接及会话

       网络层之后,我们聚焦连接与会话分离的具体实现。通过剥离连接及收发包的具体实现,连接和会话的管理变得更加清晰简洁。

       首先,一个TCP连接的逻辑抽象结构在XClient中实现,为避免误解,取名为client与JDBC中的Connection区别。该类管理TCP连接和并行运行的会话,负责TCP完整生命周期的管理、认证鉴权,并维护公共信息。其中,workingSessionMap记录了连接上并行运行的所有会话映射关系,可快速通过会话ID找到对应的会话抽象结构XSession。

       XSession提供了所有会话相关的请求函数和信息存储,包括执行计划请求、SQL查询请求、SQL更新请求、TSO请求、会话变量处理、数据包处理及异步唤醒等。

       连接池及全局单例管理器

       为了提高性能,TCP连接和会话的复用必不可少。由于连接和会话的解绑,连接池不仅缓存了到计算节点的TCP连接,也缓存了到计算节点的会话。

       XClientPool管理到一个存储节点的连接池,通过IP,端口,用户名三元组唯一确定目标存储节点,同时存储该节点的全部TCP连接(XClient)和建立的会话(XSession)。

       XClientPool实现存储节点会话获取,对应JDBC接口中的getConnection,同时实现连接和会话生命周期管理、连接探活、会话预分配等功能。实现单个存储节点连接池后,XConnectionManager维护目标存储节点三元组到实例连接池的映射,管理定时任务线程池,实现定时探活、会话&连接最长生命控制以及连接池预热等功能。

       JDBC兼容层

       新的SQL协议层对上层使用者要求较高,为了提高开发效率,私有协议提供兼容JDBC的使用方法,实现从JDBC平滑切换至私有协议,并支持协议热切换。

       JDBC兼容层代码目录在compatible目录下,Connection继承在XConnection文件中。提供包括DataSource、Connection、Statement、PreparedStatement、ResultSet、ResultSetMetaData在内的大部分常用接口函数实现,不支持的函数会明确抛出异常避免误用。

       整体关系

       至此,私有协议计算节点端的大部分结构已说明完成。给出一个整体的关系图。

       私有协议连接的一生(CN视角)

       了解了私有协议各层实现后,我们以发到存储节点的请求为例,完整梳理执行流程。绕开计算节点复杂流程,直接运行代码示例(注:需将com.alibaba.polardbx.rpc.XConfig#GALAXY_X_PROTOCOL设置为true)。

       直接运行playground看到预期的select 1的结果。接下来,我们深入跟踪说明。

       数据源初始化

       要使用私有协议,需要初始化对应存储节点的XDataSource。构造过程中,XDataSource会到XConnectionManager注册新的实例连接池,已存在的连接池引用计数加一。

       获取Connection

       当需要执行查询时,首先获取会话。无论是显式开启事务还是使用auto commit事务,会话都是执行请求的最小上下文。通过XDataSource的getConnection方法获取到对应存储节点的会话。XDataSource根据存储的IP,端口,用户名三元组查找到XConnectionManager中的连接池,在最高并发检查后,会话获取逻辑在XClientPool实现。首先尝试在空闲会话池中拿会话,通过重置检查和初始化后返回给调用者。大部分场景下,ConcurrentLinkedQueue提供较好的并发性能。

       在代码场景下,数据源刚新建,后台定时任务未运行,流程进入连接创建流程。会有一把大锁锁住连接池,在TCP连接未达上限且没有超时的情况下,快速新建一个XClient占坑。若超限,则进入busy waiting循环。真正的TCP connect(waitChannel)在锁外被调用,首先client以阻塞模式带超时方式connect,然后切换为非阻塞模式,round robin策略注册到NIOProcesser上,返回时,TCP连接已建立。

       为了兼顾安全和性能,连接鉴权在TCP建连后只用做一次,会话创建不需要鉴权。鉴权在initClient中完成,发送SESS_AUTHENTICATE_START_VALUE包,后续校验由回调完成。认证采用标准的MySQL认证流程,server端返回challenge值,库名、用户名和加盐hash后的密码返回给MySQL即可完成认证。

       至此,到存储节点的TCP连接已建立,创建会话是一个异步流程。在创建新XClient时,XConnection已new好,通过下断点跟进去可看到newXSession流程,分配session id,设置状态为init,将XSession绑定到XConnection上。

       最后,XConnection经过初始化(重置auto commit状态)、重置默认DB、默认字符集(lazy操作)和统计信息记录,返回给用户使用。

       发送查询请求

       拿到初始化好的兼容JDBC的Connection,为了简化流程,直接调用XConnection中的execQuery。XConnection的execQuery包装了XSession的execQuery,执行前执行了设置流式模式。

       首先记录调用信息进行统计,进入关键的initForRequest流程。XSession初始化流程lazy,仅分配session id,设置状态为Init,真正创建session时发送SESS_NEW给server,绑定新session和session id。如果session已复用,则状态为Ready。

       执行字符集更改的lazy操作,session可能在其他请求中切换字符集,根据目标字符集和当前字符集对比,决定是否发送额外的字符集更改请求。

       经过一系列变量设置、lazy DB设置和protobuf包构造,请求发送到存储节点执行。发送后,同步生成XResult负责结果解析,同时XResult按照请求顺序依次拉链表,确保结果与请求一一对应。

       请求流水线结构如下图所示,处理完成前序请求后,才能解析后续结果。

       接收结果集

       请求已发送到存储节点执行,拿到XResult,通过XResult收集查询结果集。XResult与发送请求一一对应,存储节点处理也是在会话上排队进行,不会影响流水线上其他请求的返回,保证流水线正常工作。

       首先,查看结果集处理的状态机,主要状态包括获取元数据、获取数据行、获取额外信息等,顺序固定,根据请求类型,部分环节可能被省略。报错处理贯穿整个状态机,任何报错信息都会导致状态机进入错误处理环节。

       对于非流式数据读取,请求结束时主动调用finishBlockMode将所有数据读出并缓存到rows中。对于流式执行的情况,结果集状态机消费数据包队列由XResult的next函数推动,内部函数internalFetchOneObject递归调用前序XResult,消费前序请求结果,从数据包队列中消费并推动状态机流转。

       对于查询,首先收到RESULTSET_COLUMN_META_DATA包,表示返回数据列定义,一个包表示一列。元数据包后,收到包含数据行的RESULTSET_ROW包,一个包对应一行。数据行传输完成后,server端发送RESULTSET_FETCH_DONE标示数据发送完成。请求结束前,NOTICE包用于告知客户端rows affected等信息。最后,SQL_STMT_EXECUTE_OK包标示请求结束。

       至此,完整请求处理完成,控制台应显示查询结果。

       总结

       本文详细描述了私有协议连接流程中的关键点和关键数据结构,相信通过本文描述,大家掌握了私有协议连接流程的基本点,在调试和修改使用中能够更加得心应手。虽然本文篇幅较长,但实际使用中涉及更多高级特性的使用,如多请求流水线、流控、执行计划传输、chunk结果集传输等。通过本文,我们对私有协议连接流程有了深入理解,为在实际场景中应用提供坚实基础。

本文地址:http://5o.net.cn/html/74c66999256.html 欢迎转发