【如何更改源码时区】【veracrypt 源码分析】【abse指标源码】unreal 源码分析

时间:2024-11-13 13:26:38 来源:博客页面源码下载 编辑:android 找茬 源码

1.UE5在Windows平台上的源码WindowsEngine.ini文件源码解读分析
2.unreal资源的元数据
3.UE4源码剖析:MallocBinned(上)
4.UE5在iOS上的DataDrivenPlatformInfo.ini文件源码解读分析
5.游戏引擎随笔 0x29:UE5 Lumen 源码解析(一)原理篇
6.UE5引擎Paper2D插件上的IntMargin.h文件源码解读分析

unreal 源码分析

UE5在Windows平台上的WindowsEngine.ini文件源码解读分析

       引言: 在深入探究UE5的底层结构时,WindowsEngine.ini文件的分析作用不可小觐。

       它是源码Unreal Engine 5中对Windows平台特有的设置和优化的集合体,从音频处理到贴图流,分析再到系统级的源码性能配置,每一行代码都蕴含着引擎开发者对于性能和用户体验的分析如何更改源码时区考量。

       本文将详尽地解析WindowsEngine.ini文件的源码每个部分,揭示其背后的分析逻辑和设计哲学。

       每一条注释都紧跟在对应的源码设置项后面,解释该设置项的分析功能和目的。这些注释对于理解和维护配置文件至关重要,源码尤其是分析在涉及多人协作或长期项目维护时。

       1、源码[Audio] 部分

       2、分析[TextureStreaming] 部分

       3、源码[SystemSettings] 部分

       4、[PlatformCrypto] 部分

       结语: WindowsEngine.ini文件不仅仅是一系列配置项的罗列,更是UE5为Windows平台精心调优的证明。

       通过这些设置,开发者能够为玩家提供更佳的视听体验和更流畅的游戏性能。

       这份文件的每一项配置都是引擎优化和平台兼容性工作的见证,展现了Unreal Engine在跨平台支持方面的卓越能力。

unreal资源的元数据

       uasset的metadata定义

       metadata指的是在uasset导入后,额外添加的自定义信息。这种信息采用key-value的结构,并且仅在editor下使用,对正式发布的资源没有任何影响。

       自定义信息的操作方式

       对于这类自定义信息,可以进行以下操作:

       增加metadata的veracrypt 源码分析方法

       目前有两种方法可以增加metadata,分别是蓝图和Python。

       使用蓝图增加metadata

       首先需要安装Editor Scripting Utilities。

       通过Editor Utilities>Editor Utility Blueprint创建一个编辑工具类。

       例如,如果想要为资源添加作者,完成蓝图后,执行该工具即可为资源添加元数据。

       使用Python增加metadata

       首先需要安装Python Editor Scripting Plugin。

       然后选择一个合适的位置创建一个Python脚本。

       UE默认寻找的路径是引擎源码/Engine/Binaries/Win(系统平台)/下。

       查看metadata

       查看metadata非常简单。

       选中要查看的资源,然后右键菜单中选择Asset Actions>Show Metadata。

UE4源码剖析:MallocBinned(上)

       近期着手UE4项目开发,对UnrealEngine已久仰慕,终于得此机会深入探索。鉴于项目内存性能问题,决定从内存分配器着手,深入研读UE4源码。虽个人水平有限,尚不能全面理解,但愿借此机会揭开源码神秘面纱,让新手朋友们不再感到陌生。

       UE4内存分配器位于硬件抽象层HAL(Hardware Abstraction Layer)中。具体装箱内存分配器代码位于VS项目目录:UE4/Source/Runtime/Core/Private/HAL/MallocBinned。

       分析从ApplePlatformMemory::BaseAllocator开始,可发现Mac平台的默认分配器为MallocBinned,iOS的abse指标源码默认分配器为MallocAnsi。以下将重点分析MallocBinned。

       一、确定对齐方式

       FScopeLock用于局部线程锁,确保线程同步。关于Alignment的确定,通常使用默认值。默认值取决于内存对齐方式,此处默认对齐为8字节。

       二、确定有足够空间来内存对齐

       代码中,SpareBytesCount用于确认空间足够。若分配内存小于8字节,则按Alignment大小匹配箱体;若大于8字节,则按Size + Alignment - sizeof(FFreeMem)匹配箱体。

       三、确定箱体大小

       根据Size的大小,有三种不同的处理方式。k以下的内存分配采用装箱分配,PoolTable中包含个不同大小的池子。

       四、初始化内存池

       分析内存池初始化过程,主要工作包括:确定内存大小,分配内存块,设置内存池基本信息。

       五、内存装箱

       AllocateBlockFromPool从内存池中分配一个Block,实现内存装箱过程。

UE5在iOS上的潮玩源码DataDrivenPlatformInfo.ini文件源码解读分析

       Unreal Engine 5(UE5)提供了强大的数据驱动平台信息体系,开发者通过配置文件能对不同平台实现精准设置。此配置确保游戏在多平台下展现一致表现与体验。本文深入剖析了DataDrivenPlatformInfo.ini文件在UE5项目中对iOS平台的参数设定。

       平台基础信息涵盖:

       常规设置

       图标路径与教程路径

       编译器与组平台设置

       预览平台设置涉及:

       IOSMetal与IOSMetalSM5

       预览特性

       着色器平台设置包含:

       ShaderPlatform METAL

       ShaderPlatform METAL_MRT

       通过精细配置DataDrivenPlatformInfo.ini,UE5开发者可针对iOS设备特性优化游戏。每一项设置旨在最大化利用硬件,同时确保跨平台一致性。随着UE5与iOS硬件发展,理解与应用这些配置项对于游戏成功至关重要。

游戏引擎随笔 0x:UE5 Lumen 源码解析(一)原理篇

       实时全局光照的追求一直是图形渲染界的焦点。随着GPU硬件光线追踪技术的兴起,Epic Games的Unreal Engine 5推出了Lumen,一个结合SDF、Voxel Lighting、Radiosity等技术的软件光线追踪系统。Lumen的实现极其复杂,涉及个Pass,近5.6万行C++代码和2万行Shader,与Nanite、Virtual Shadow Map等系统紧密集成,并支持混合使用硬件和软件光线追踪。

       本系列将逐步解析Lumen,从原理入手。Lumen以简化间接光照(主要由漫反射构成)为核心,采用Monte Carlo积分方法估算,利用Ray Tracing获取Radiance,生成Irradiance,最终得到光照值。起步源码网它的核心是Radiance的计算、缓存和查询,以及这些操作的高效整合。

       数学原理上,Lumen依赖渲染方程,通过离散采样近似无限积分。它主要处理Diffuse部分,利用Lambert Diffuse和Ray Tracing获取Radiance。加速结构方面,Lumen利用SDF Ray Marching在无需硬件支持的情况下实现高效的SWRT。

       Surface Cache是关键技术,通过预生成的低分辨率材质属性图集,高效获取Hit Point的Material Attribute,结合SDF Tracing,为Lumen提供了实时性能。Radiance Cache则是将Direct Lighting结果保存,便于后续的光照计算和全局光照的无限反弹。

       Lumen构建了一个由DF和Surface Cache构成的低精度场景表示,即Lumen Scene,负责Mesh DF更新、Global DF合并和Surface Cache更新。通过Screen Space Probe的自适应放置,Lumen实现了高效的光照追踪和降噪处理。

       总体流程包括Lumen Scene更新、Lighting计算和Final Gather,涉及众多数据流和过程,通过3D Texture和Spatial Filtering进行降噪和Light Scattering的处理。后续篇章将深入源码,以更详细的方式揭示Lumen的实现细节和优化策略。

UE5引擎Paper2D插件上的IntMargin.h文件源码解读分析

       深入探索Unreal Engine 5 (UE5) 的Paper2D插件时,我们发现IntMargin.h文件中定义了FIntMargin结构体,它用于在整数网格上描述2D区域周围空间的一种数据结构。FIntMargin是一个简单而直观的结构体,用于存储和操作2D界面元素的边距。它采用结构体形式,包含四个公共成员变量:Left、Top、Right和Bottom,使用int类型存储,通过UPROPERTY宏标记为蓝图可读写,归类于Appearance类别。

       FIntMargin设计简洁,仅用于存储相关数据,无封装或继承特性。UE5的代码风格倾向于使用结构体来表示简单的数据集合。FIntMargin包含了四个构造函数,分别用于不同初始化场景,便于快速实例化。结构体通过重载+和-运算符,实现边距的加法和减法操作,简化布局调整中的边距计算。同时,==和!=运算符也被重载,用于比较两个FIntMargin实例是否相等。

       GetDesiredSize方法返回一个FIntPoint结构体,表示由当前边距定义的总尺寸,强化了FIntMargin在布局计算中的功能性。IntMargin.h文件的架构体现了UE5编码风格中的简洁性、直观性和高度的可读性,符合其对代码清晰度、性能和易用性的整体设计哲学。

       FIntMargin结构体虽然简单,但它是UE5中Paper2D插件架构中的基本构建块之一,体现了UE5的设计原则。通过理解此类基本组件,开发者可以深入掌握UE5架构的关键步骤。在未来的版本中,UE5可能会对FIntMargin进行进一步的迭代和优化,以保持其在不断演进的技术环境中的领先地位。

UE动画优化之URO(UpdateRateOptimizations)源码解析

       1. URO技术是Unreal Engine动画优化的重要组成部分,它通过智能调整远离摄像头的对象的动画帧率,实现了动画质量和性能的平衡。

       2. 在UE中,URO与LOD和VisibilityBasedAnimTick协同工作,核心动画处理主要在USkeletalMeshComponent的TickComponent和TickPose中执行。

       3. FAnimUpdateRateManager负责指挥整个动画更新频率的调整过程,根据对象距离、LOD等因素动态地进行优化,确保每一帧的动画都既流畅又经济。

       4. USkinnedMeshComponent通过TickUpdateRate和FAnimUpdateRateManager的配合,实现了URO的效果。开发者可以通过SetTrailMode和SetLookAheadMode等函数,对动画参数进行精细调整,使角色动作既自然又节能。

       5. 要掌握URO,关键在于四个策略:命令行魔法、距离阈值决定论、LOD定制策略和插值选项。这些策略可以通过CVarEnableAnimRateOptimization、CVarForceAnimRate、MaxDistanceFactor、LODToFrameSkipMap等参数进行调整。

       6. SkeletalMesh组件提供了VisibilityBasedAnimTickOption设置,以实现不同状态下的动画表现一致性。

       7. 使用DisplayDebugUpdateRateOptimizations,开发者可以可视化URO的运行情况,帮助精准调整优化策略,提升游戏性能。

       8. 通过细致的设置,URO就像一位精密的调音师,为游戏世界赋予了动态且高效的动画生命。

为什么unreal虚幻引擎源码编译如此慢,有方法改进吗?

       为何虚幻引擎源码编译过程缓慢?确实,许多开发者在使用虚幻引擎时,会遇到编译时间过长的问题,这可能对项目进度造成影响。幸运的是,存在多种策略帮助优化编译速度。首先,考虑使用IncrediBuild、FastBuild或Horde等工具,它们能显著提升编译效率。请确保所购买的许可证支持当前处理器的核心数量,否则加速效果受限。

       其次,性能卓越的CPU是关键。选择高性能CPU将直接影响编译速度。请注意,CPU的性能直接影响编译加速效果,购买CPU时,务必检查与当前硬件匹配的许可证类型。

       将引擎源码与项目放入固态硬盘能显著提升读取和写入速度,加速编译过程。SSD的高速性能可极大地减少编译时间,提高开发效率。

       第三,禁用项目中不必要的插件也能有效缩短编译时间。每个插件都会增加编译负担,因此,精简配置能提高编译效率。

       在Windows 操作系统下,遇到使用小核而非大核的情况时,可以尝试使用Process Lasso工具。此工具有助于调整CPU使用策略,确保大核得到充分利用。然而,在Windows 系统上,这一问题通常不会出现。

       综上所述,通过优化硬件选择、利用编译加速工具、改进项目配置以及合理管理CPU使用策略,开发者可以有效提升虚幻引擎源码的编译速度,从而加速项目开发进程。

UE5 源码结构解读——Unreal Engine 5文件系统详细导览

       欢迎加入“虚幻之核:UE5源码全解”,探索Unreal Engine 5(UE5)的深层秘密。作为一款行业领先的游戏引擎,UE5不仅集成了Nanite虚拟化微多边形几何系统和Lumen动态全局光照等革新技术,还提供了一个深度解析专栏,帮助开发者、图形程序员和技术艺术家从源码级别理解其核心构造。

       UE5不仅仅是一个游戏引擎,它代表了虚幻技术的巅峰,赋予了创造创新视觉和互动体验的无限可能。我们的专栏将深入探讨这些技术背后的源代码,揭示它们的工作原理,并展示如何在您的项目中实现和优化它们。

       每一期专栏都是一个精心设计的知识模块,旨在让读者不仅掌握UE5的功能,更从源码层面掌握其实现细节。从资产流水线到渲染过程,从物理模拟到AI行为树,无论您希望优化当前项目性能,还是探索UE5隐藏的功能和技巧,这里都将为您提供宝贵的资源。

       “虚幻之核:UE5源码全解”是您探索虚幻引擎深层秘密的起点,让我们用源码解答虚幻世界中的奥秘。

copyright © 2016 powered by 皮皮网   sitemap