1.Vue 2.0 源码解析:深入剖析模板编译原理与实 现步骤
2.探索Android开源框架 - 8. Gson使用及源码解析
3.Bert4keras开源框架源码解析(一)概述
4.Vue2 源码解析
5.多图详解万星Restful框架原理与实现
6.Vert.x 源码解析(4.x)——Future源码解析
Vue 2.0 源码解析:深入剖析模板编译原理与实 现步骤
Vue.js 2.0,框架框架这款流行的源码源码JavaScript框架,其核心魅力之一在于其模板编译机制。解析解析本文将逐步揭示Vue 2.0模板编译的书籍内部运作,包括解析原理和实际实现步骤。推荐 首先,框架框架在线积分商城源码Vue的源码源码模板编译原理是通过基于HTML的声明式语法,将DOM与底层数据绑定。解析解析在运行时,书籍它将模板转化为高效的推荐渲染函数,这个函数能执行并生成虚拟DOM树。框架框架 编译过程分为几个关键步骤:解析模板:Vue使用正则表达式解析模板,源码源码识别指令和插值表达式,解析解析构建抽象语法树(AST)。书籍
优化AST:通过遍历,推荐标记静态节点,以优化性能,减少渲染时不必要的计算。
生成代码:AST被转化为可执行的JavaScript代码字符串。
创建渲染函数:使用`new Function`将代码字符串转化为实际的函数。
执行渲染函数:调用生成的函数,生成虚拟DOM。
例如,解析模板的过程会将模板字符串转化为一个token数组,每个token包含类型和值。而在代码生成阶段,会根据AST中的节点类型生成相应的代码段。 理解这些步骤有助于我们深入理解Vue 2.0的工作机制,从而在开发中灵活运用,进行性能优化。本文详细剖析了模板编译的各个环节,希望能帮助你更好地掌握Vue 2.0模板编译的精髓。探索Android开源框架 - 8. Gson使用及源码解析
深入解析Android开源框架中的校园服务类源码Gson使用及其源码解析,Gson作为Java语言的高效JSON转换库,以其简洁的API和高性能的特点,成为Android开发中进行数据序列化和反序列化的首选工具。本文将详细介绍Gson的使用方法,包括基本的解析与生成、属性重命名、POJO与JSON的字段映射规则、泛型的封装、序列化与反序列化过程,以及如何进行字段过滤与自定义序列化器和反序列化器的实现。
1. **基本的解析与生成
**使用Gson进行JSON字符串解析时,可以通过Gson对象的fromJson方法将JSON字符串转换为Java对象,反之,使用toJson方法将Java对象转换为JSON字符串。
2. **属性重命名
**通过使用@SerializedName注解,可以方便地在POJO类中重命名JSON字段,以匹配服务端返回的数据结构,从而避免硬编码的字符串匹配。
3. **POJO与JSON的字段映射规则
**Gson通过构建一个映射规则来匹配JSON字段到POJO类的属性,确保数据的正确解析与生成。这主要通过类型适配器(TypeAdapter)来实现,使得Gson能够理解如何处理复杂数据类型,如日期、集合等。
4. **泛型的封装
**在使用Gson进行序列化和反序列化时,可以通过泛型来保证类型安全,确保不会出现类型转换错误。GsonBuilder提供了一系列方法来实现泛型的封装,使得API调用更为清晰和明确。
5. **Gson的序列化、反序列化
**通过Gson的API,可以轻松实现Java对象到JSON字符串的圣斗士星矢源码序列化,以及从JSON字符串反序列化到Java对象的过程。这使得数据在不同系统间传输变得简单高效。
6. **字段过滤
**提供了多种方法进行字段过滤,如使用@Expose注解、基于版本的过滤、访问修饰符、以及基于策略的自定义过滤规则,以满足不同的数据处理需求。
7. **TypeAdapter、JsonSerializer与JsonDeserializer
**实战中,可能需要处理一些特殊的数据类型或复杂逻辑,这时可以通过实现JsonSerializer或JsonDeserializer来自定义序列化和反序列化过程。TypeAdapter则可以用于处理复杂类型的序列化。
8. **实战TypeAdapterFactory
**在某些场景下,可以通过实现TypeAdapterFactory来创建自定义的TypeAdapter,从而实现更为灵活的数据处理逻辑。
9. **@JsonAdapter注解
**用于指定自定义的序列化器或反序列化器,简化了实现自定义序列化逻辑的步骤,使得代码更为简洁和易读。
. **源码解析
**通过深入源码分析,可以更好地理解Gson内部的实现机制,如fromJson方法如何获取适配器、getAdapter方法如何选择适配器、Gson的构造方法如何初始化适配器列表,以及如何通过反射机制创建绑定字段等关键逻辑。这不仅有助于解决实际开发中的问题,还能加深对Gson工作的理解,为后续的优化和定制提供基础。
Bert4keras开源框架源码解析(一)概述
Bert4keras是苏剑林大佬开源的一个文本预训练框架,相较于谷歌开源的bert源码,它更为简洁,对理解BERT以及相关预训练技术提供了很大的国学书籍主题源码帮助。
源码地址如下:
代码主要分为三个部分,分别在三个文件夹中。
在bert4keras文件夹中,实现了BERT以及相关预训练技术的算法模型架构。examples文件夹则是基于预训练好的语言模型进行的一系列fine-tune实验任务。pretraining文件夹则负责从头预训练语言模型的实现。
整体代码结构清晰,主要分为以下几部分:
backend.py文件主要实现了一些自定义组件,例如各种激活函数。这个部分之所以命名为backend(后端),是因为keras框架基于模块化的高级深度学习开发框架,它并不仅仅依赖于一种底层张量库,而是对各种底层张量库进行高层模块封装,让底层库负责诸如张量积、卷积等操作。例如,底层库可能选择TensorFlow或Theano。
在layers.py文件中,实现了自定义层,如embedding层、多头自注意力层等。
optimizers.py文件则实现了优化器的定义。
snippets.py文件包含了与算法模型无关的辅助函数,例如字符串格式转换、文件读取等。
tokenizers.py文件负责分词器的实现。
而model.py文件则是框架的核心,实现了BERT及相关预训练模型的算法架构。
后续文章将详细解析这些代码文件,期待与大家共同进步。
Vue2 源码解析
Vue.js,作为前端开发中的php源码失效时间知名框架,其核心机制在于数据的自动监测和响应式更新。阅读源码有助于理解其工作原理,尤其是依赖收集、数据监听和模板编译的过程。1. 依赖收集与数据监听
Vue 通过getter和setter机制监控数据变化,确保DOM的自动更新。数据变更时,Vue 会区分"推送"与"拉取"策略。"推送"用于像data和watch这样的直接访问,当数据变化时主动通知依赖;而"拉取"策略在计算属性或methods中使用,依赖会自动跟随数据变化更新。 核心方法如defineReactive(),在实例初始化时将data转换为可响应的getter和setter,收集依赖关系。Watcher负责在数据变化时执行相应的逻辑。2. 模板编译与渲染
Vue 通过render()方法将模板编译为AST并优化为虚拟DOM,然后在挂载时调用$mount()进行渲染。在web平台上,$mount会调用mountComponent(),处理初次渲染和更新的差异。3. 组件机制
Vue组件解析是通过webpack等工具将.vue文件转换为JS,组件拥有独立的Vue实例,独立渲染。v-model双向绑定在1.0和2.0中有所变化,2.0版本下,它本质上是:value绑定和事件绑定的结合。4. 实现细节
例如,nextTick()方法处理异步更新DOM的问题,确保在DOM更新后执行回调。Vue-router关注更新URL和监听URL变更,使用history模式解决hash模式的局限。5. 周边技术
vue-router在前端路由中处理URL更新和监听,而Vuex用于状态管理,提供了一个状态统一存储和分发的解决方案。vue-cli是Vue的命令行工具,用于项目初始化和管理。多图详解万星Restful框架原理与实现
rest框架概览
我们先通过go-zero自带的命令行工具goctl来生成一个apiservice,其main函数如下:
funcmain(){ flag.Parse()varcconfig.Configconf.MustLoad(*configFile,&c)ctx:=svc.NewServiceContext(c)server:=rest.MustNewServer(c.RestConf)deferserver.Stop()handler.RegisterHandlers(server,ctx)fmt.Printf("Startingserverat%s:%d...\n",c.Host,c.Port)server.Start()}解析配置文件
将配置文件传入,初始化serviceContext
初始化restserver
将context注入server中:
注册路由
将context中的启动的endpoint同时注入到router当中
启动server
接下来我们来一步步讲解其设计原理!Let'sGo!
web框架从日常开发经验来说,一个好的web框架大致需要满足以下特性:
路由匹配/多路由支持
支持自定义中间件
框架和业务开发完全解耦,方便开发者快速开发
参数校验/匹配
监控/日志/指标等服务自查功能
服务自保护(熔断/限流)
go-zerorest设计/api-grammar.html中的tag修饰符
Tips学习源码推荐fork出来边看边写注释和心得,可以加深理解,以后用到这块功能的时候也可以回头翻阅。
项目地址/zeromicro/go-zero
欢迎使用go-zero并star支持我们!
微信交流群关注『微服务实践』公众号并点击交流群获取社区群二维码。
Vert.x 源码解析(4.x)——Future源码解析
在现代软件开发中,异步编程的重要性日益凸显,提升并发性能并处理大量并行操作。Vert.x,作为一款基于事件驱动和非阻塞设计的异步框架,提供了丰富的工具简化异步编程。本文将深入解析Vert.x 4.x版本的Future源码,理解其关键类和功能。1. 异步核心
Vert.x的核心在于FutureImpl和PromiseImpl,它们是实现异步操作的关键。AsyncResult是通用接口,用于表示异步操作的结果,包含成功值或失败异常。2. Future类详解
Future扩展了AsyncResult,提供了组合操作如join、any、all和map等功能。内部的FutureInternal主要负责添加监听器,FutureBase负责执行监听器和转换函数。 具体来说,FutureImpl的onComplete方法接收一个handler,任务完成后执行,而tryComplete则在异步操作有结果时触发,最终调用用户指定的handler。 相比之下,Promise允许用户手动设置异步结果,PromiseImpl继承自FutureImpl,并增加了context获取功能。3. 实例与源码分析
通过简单的入门实例,如独立使用Future,我们可以看到Vert.x如何通过创建PromiseImpl获取Future。源码分析显示,Promise.future获取Future,OnComplete用于添加监听,而complete方法则用于设置值并通知监听器。4. 深入源码
在源码层面,addListener和emitSuccess方法在OnComplete中扮演重要角色。而complete方法,特别是tryComplete,是设置值并触发监听的关键。5. 总结
总的来说,理解Vert.x中的Future,就是创建PromiseImpl获取Future,通过OnComplete添加监听器,然后通过Promise的complete方法设置值并通知监听器。后续还将深入探讨其他Future实现类,如all、any和map的原理。腾讯插件化—Shadow源码
腾讯插件化框架Shadow介绍及源码解析 Shadow是一个由腾讯自主研发的Android插件框架,经过线上亿级用户量的检验,其在插件技术领域展现出不俗的实力。Shadow不仅开源分享了关键代码,还全面分享了上线部署所需的设计方案。 与市面上其他插件框架相比,Shadow在技术特点上主要体现在:支持特性编译与开发环境准备:建议使用最新稳定版本的Android Studio,推荐打开工程并选择sample-app或sample-host模块直接运行,体验不同安装情况下的运行效果。
代码结构清晰:所有代码集中在projects目录下的三个子目录中,sample目录为体验Shadow的最佳环境,详细信息可参考README文档。
插件加载与启动流程解析 插件加载是Shadow框架的核心,从loadPlugin作为起点,通过一系列步骤实现插件的动态加载与启动。包括但不限于:本地启动顺序:重点关注启动流程的第一、二步,回溯整个过程最终调用Plugin Manager的DynamicPluginManager.enter方法。
跨进程调用与Activity加载:调用mDynamicPluginLoader.callApplicationOnCreate方法执行插件加载,之后通过FastPluginManager.convertActivityIntent方法启动Activity。
Activity与Service加载机制 在Activity与Service加载机制上,Shadow采用与Android系统自身一致的实现方式:通过修改ClassLoader的parent属性,插入DexClassLoader实现插件apk的加载与Activity的实例化。具体步骤包括:new一个DexClassLoader加载插件apk,从插件ClassLoader中load指定的插件Activity名字,newInstance之后强转为Activity类型使用。 Shell Activity复用与资源管理 为了解决资源复用与访问问题,Shadow通过代理Activity的方式,通过Intent的参数确定构造哪个Activity,令壳子Activity能够复用,实现资源的隔离管理。此外,对同名View与资源的处理也非常关键,通过自定义类加载器与AOP技术,解决此类问题。 组件调用与优化 对于Service、Content Provider与Broadcast Receiver的调用,Shadow提供了优化方案,如通过ShadowContext启动Service、使用ShadowAcpplication注册静态广播等。 总结与学习建议 本文详细解析了插件化框架Shadow的源码与实现机制,深入探讨了其解决插件加载、Activity启动、资源管理等问题的策略。对于深入理解Android插件化技术,实现高效、稳定的插件化解决方案具有重要参考价值。建议对Android核心技术感兴趣的开发者深入阅读《Android核心技术手册》,了解更多关于插件化、热修复等技术的详细内容。Vue3核心源码解析 (一) : 源码目录结构
通过软件框架源码阅读,深入理解框架运行机制,API设计、原理及流程成为开发者进阶的关键。Vue 3源码相较于Vue 2版本的改进明显,采用Monorepo目录结构,引入TypeScript作为开发语言,新增特性和优化显著。
启动Vue3源码,最新版本为V3.3.0-alpha.5。下载后进入core文件夹,使用Yarn进行构建。安装依赖后,执行npm run dev启动调试模式,可直观查看完整的源代码目录结构。
核心模块包括compiler-core、compiler-dom、runtime-core、runtime-dom。compiler模块在编译阶段负责将.vue文件转译成浏览器可识别的.js文件,runtime模块则负责程序运行时的处理。reactivity目录内是响应式机制的源码,遵循Monorepo规范,每个子模块独立编译打包,通过require引入。
构建Vue 3版本可使用命令,构建结果保存在core\packages\vue\dist目录下。选择性构建可通过命令实现,具体参数配置在core/rollup.config.js中查看。对于客户端编译模板,需构建完整版本,而使用Webpack的vue-loader时,.vue文件中的模板在构建时预编译,无需额外编译器。浏览器直接打开页面时采用完整版本,构建工具如Webpack引入运行时版本。Vue的构建脚本源码位于core/scripts下。