欢迎来到皮皮网官网

【区块链发币源码】【eclipse导入jmeter源码】【实时语音源码】tensorflow源码安装

时间:2024-11-25 07:25:28 来源:ipmitool的源码

1.tensorflowԴ?源码밲װ
2.TF-TRT使用环境搭建
3.win10 + CUDA 9.0 + cuDNN 7.0 + tensorflow源码编译安装
4.Python语言学习(三):Tensorflow_gpu搭建及convlstm核心源码解读
5.从源码build Tensorflow2.6.5的记录

tensorflow源码安装

tensorflowԴ?밲װ

       针对macOS mojave ..6系统用户在编译tensorflow 2.6版本时遇到的SSE4.1、SSE4.2和AVX指令集问题,安装以下为解决步骤:

       首先,源码前往tensorflow源码下载页面,安装下载v2.6.0版本。源码

       然后,安装区块链发币源码进入下载后的源码目录,定位至v2.6.0。安装

       接下来,源码准备必要的安装软件环境。确保已安装java和minconda。源码

       开始编译tensorflow时,安装关键在于使用优化指令集。源码在执行编译命令时,安装加入参数`-march=native`以进行cpu指令集优化。源码

       使用命令行进行编译:`bazelisk build -c opt --copt=-march=native //tensorflow/tools/pip_package:build_pip_package`。

       编译完成后,在/tmp/tensorflow_pkg目录下找到生成的wheel文件。使用pip进行安装,即可完成tensorflow 2.6版本的安装。

       完成编译与安装后,用户可根据需要下载tensorflow-2.6.0-cp-cpm-macosx___x_.whl文件。提取码为kkli。

TF-TRT使用环境搭建

       TF-TRT,即TensorFlow与TensorRT的集成,是NVIDIA为加速深度学习推理应用而设计的工具。它简化了TensorFlow用户在GPU上利用TensorRT进行模型推理的流程。本文主要介绍如何在服务器上搭建TF-TRT的eclipse导入jmeter源码使用环境和编写相关代码。

       首先,NVIDIA推荐的TF-TRT环境配置基于TensorRT 5.0RC,需要确保NVIDIA驱动程序版本.0以上,CUDA .0以及TensorRT。安装过程建议在Anaconda的虚拟环境中进行,从Tensorflow GitHub上下载1.版本源码,并通过bazel build工具生成pip安装包。在编译时,由于GCC 5.0可能与新版本兼容性问题,需添加特定编译选项。

       对于服务器上直接安装,你需按照官方教程安装CUDA、CUDNN、NVIDIA Driver和TensorRT。在Tensorflow的configure文件中,根据你的硬件配置进行相应的调整。然后,通过pip安装生成的.whl文件,安装时需要注意选择nvcc编译器,cudnn 7.3以上版本,以及兼容性的GCC编译选项。

       另一种方式是利用Docker容器,Tensorflow .容器需要nvidia driver +版本,并需要获取Nvidia GPU cloud的API密钥。安装完成后,你可以通过Docker拉取tensorflow:.-py3镜像,验证TensorRT与Tensorflow的实时语音源码集成是否成功。

       无论是直接安装还是容器化,都需注意选择合适的驱动和软件版本,以确保TF-TRT的稳定运行。安装过程中,还可以根据实际需求在container中安装其他软件,以满足个性化需求。

win + CUDA 9.0 + cuDNN 7.0 + tensorflow源码编译安装

       在配置个人深度学习主机后,安装必备软件环境成为首要任务。使用Anaconda5.0.0 python3.6版本管理Win python环境,新建基于python3.5的tensorflow-gpu-py conda环境。直接使用conda安装tensorflow,会默认安装tensorflow-gpu 1.1.0并主动安装cudatoolkit8.0 + cudnn6.0。若需配置CUDA环境,需自行下载并安装cuda9.0 + cudnn7.0,配置环境变量。pip安装tensorflow,会默认安装最新版本tensorflow-gpu 1.3.0。配置不当导致import tensorflow时报错:'ModuleNotFoundError: No module named '_pywrap_tensorflow_internal'。尝试源码编译tensorflow解决此问题。

       查阅tensorflow官网文档,了解cmake window build tensorflow方法。文档中提到,tensorflow源代码目录下有详细网页介绍Windows环境编译方法,包含重要信息。发现安装tensorflow-gpu版本、配置CUDA8.0 + cuDNN6.0/cuDNN5.1或CUDA9.0 + cuDNN7.0时,import tensorflow时报错。mgobe答题游戏源码查阅错误信息,网上解答提及需要配置正确的CUDA和cuDNN版本。然而,尝试安装和配置后依然报错。安装tensorflow cpu版本无问题,确认CUDA环境配置错误。

       决定源码编译tensorflow-gpu以解决问题。查阅文档,执行编译操作。在window环境下编译tensorflow源码,需要准备的软件包括Git、tensorflow源码、anaconda、swig、CMake、CUDA、cuDNN、Visual Studio 。在百度网盘下载相关软件。

       配置过程中,修改CMakeLists.txt以适应CUDA 9.0 + cuDNN 7.0。在cmake目录下新建build文件夹,执行命令配置tensorflow。配置后进行编译,遇到问题如:cudnnSetRNNDescriptor参数不匹配、网络访问问题、编码问题、php加密授权源码protobuf库下载问题、zlib.h文件不存在、下载链接失败、无法解决的错误等。

       为解决这些问题,采取相应措施,如修改cuda_dnn.cc文件、网络代理设置、文件编码转换、忽略警告信息、多次尝试下载、修改cmake配置文件等。遇到无法解决的问题,如CUDA编译器问题、特定源代码文件问题,提交至github tensorflow进行讨论。

       完成源码编译后,安装tensorflow-gpu并进行验证。在下一步中继续讨论验证过程和可能遇到的后续问题。整个编译过程耗时、复杂,需要耐心和细心,希望未来能有官方解决方案以简化编译过程。

Python语言学习(三):Tensorflow_gpu搭建及convlstm核心源码解读

       在探索深度学习领域,使用Python语言进行编程无疑是一条高效且灵活的途径。尤其在科研工作或项目实施中,Python以其丰富的库资源和简单易用的特性,成为了许多专业人士的首选。本文旨在分享在Windows系统下使用Anaconda搭建TensorFlow_gpu环境及解读ConvLSTM核心源码的过程。在提供具体步骤的同时,也期待读者的反馈,以持续改进内容。

       为了在Windows系统下搭建适合研究或项目的TensorFlow_gpu环境,首先需要确认TensorFlow_gpu版本及其对应的cuDNN和CUDA版本。访问相关网站,以获取适合自身硬件配置的版本信息。以TensorFlow_gpu2.为例,进行环境搭建。

       在Anaconda环境下,通过命令行操作来创建并激活特定环境,如`tensorflow-gpu`环境,选择Python3.版本。接着,安装cuDNN8.1和CUDA.2。推荐使用特定命令确保安装过程顺利,亲测有效。随后,使用清华镜像源安装TensorFlow_gpu=2..0。激活虚拟环境后,使用Python环境验证安装成功,通常通过特定命令检查GPU版本是否正确。

       为了在Jupyter Notebook中利用该环境,需要安装ipykernel,并将环境写入notebook的kernel中。激活虚拟环境并打开Jupyter Notebook,通过命令确保内核安装成功。

       对于ConvLSTM核心源码的解读,重点在于理解模型的构建与参数设置。模型核心代码通常包括输入数据维度、模型结构、超参数配置等。以官方样例为例,构建模型时需关注样本整理、标签设置、卷积核数量等关键参数。例如,输入数据维度为(None,,,1),输出数据维度为(None,None,,,)。通过返回序列设置,可以控制模型输出的形态,是返回单个时间步的输出还是整个输出序列。

       在模型改造中,将彩色图像预测作为目标,需要调整模型的最后层参数,如将`return_sequence`参数更改为`False`,同时将`Conv3D`层修改为`Conv2D`层以适应预测彩色图像的需求。此外,选择合适的损失函数(如MAE)、优化器(如Adam)以及设置Metrics(如MAE)以便在训练过程中监控模型性能。

       通过上述步骤,不仅能够搭建出适合特定研究或项目需求的TensorFlow_gpu环境,还能够深入理解并灵活应用ConvLSTM模型。希望本文内容能够为读者提供有价值的指导,并期待在后续过程中持续改进和完善。

从源码build Tensorflow2.6.5的记录

       .从源码编译Tensorflow2.6.5踩坑记录,笔者经过一天的努力,失败四次后终于成功。Tensorflow2.6.5是截至.时,能够从源码编译的最新版本。

       0 - 前期准备

       为了对Tensorflow进行大规模修改并完成科研工作,笔者有从源码编译Tensorflow的需求。平时更常用的做法是在conda环境中pip install tensorflow,有时为了环境隔离方便打包,会用docker先套住,再上conda + pip安装。

       1 - 资料汇总

       教程参考:

       另注:bazel的编译可以使用换源清华镜像(不是必要)。整体配置流程的根本依据还是官方的教程,但它的教程有些点和坑没有涉及到,所以多方材料了解。

       2 - 整体流程

       2.1 确定配置目标

       官网上给到了配置目标,和对应的版本匹配关系(这张表里缺少了对numpy的版本要求)。笔者最后(在docker中)配置成功的版本为tensorflow2.6.5 numpy1..5 Python3.7. GCC7.5.0 CUDA.3 Bazel3.7.2。

       2.2 开始配置

       为了打包方便和编译环境隔离,在docker中进行了以下配置:

       2. 安装TensorFlow pip软件包依赖项,其编译过程依赖于这些包。

       3. Git Tensorflow源代码包。

       4. 安装编译工具Bazel。

       官网的介绍:(1)您需要安装Bazel,才能构建TensorFlow。您可以使用Bazelisk轻松安装Bazel,并且Bazelisk可以自动为TensorFlow下载合适的Bazel版本。为便于使用,请在PATH中将Bazelisk添加为bazel可执行文件。(2)如果没有Bazelisk,您可以手动安装Bazel。请务必安装受支持的Bazel版本,可以是tensorflow/configure.py中指定的介于_TF_MIN_BAZEL_VERSION和_TF_MAX_BAZEL_VERSION之间的任意版本。

       但笔者尝试最快的安装方式是,到Github - bazelbuild/build/releases上下载对应的版本,然后使用sh脚本手动安装。比如依据刚才的配置目标,笔者需要的是Bazel3.7.2,所以下载的文件为bazel-3.7.2-installer-linux-x_.sh。

       5. 配置编译build选项

       官网介绍:通过运行TensorFlow源代码树根目录下的./configure配置系统build。此脚本会提示您指定TensorFlow依赖项的位置,并要求指定其他构建配置选项(例如,编译器标记)。

       这一步就是选择y/N基本没啥问题,其他参考里都有贴实例。笔者需要GPU的支持,故在CUDA那一栏选择了y,其他部分如Rocm部分就是N(直接按enter也可以)。

       6.开始编译

       编译完成应输出

       7.检查TF是否能用

       3 - 踩坑记录

       3.1 cuda.0在编译时不支持sm_

       笔者最初选择的docker是cuda.0的,在bazel build --config=cuda //tensorflow/tools/pip_package:build_pip_package过程中出现了错误。所以之后选择了上面提到的cuda.3的docker。

       3.2 问题2: numpy、TF、python版本匹配

       在配置过程中,发现numpy、TF、python版本需要匹配,否则会出现错误。

       4 - 启示

       从源码编译Tensorflow2.6.5的过程,虽然经历了多次失败,但最终还是成功。这个过程也让我对Tensorflow的编译流程有了更深入的了解,同时也提醒我在后续的工作中要注意版本匹配问题。

copyright © 2016 powered by 皮皮网   sitemap