1.像格式--FFMPEG代码走读-TIFF格式编码
2.FFmpeg源码分析:视频滤镜介绍(上)
3.FFmpeg API深度解析:视频流画面合并、源码研究拼接与裁剪技巧
4.FFmpeg学习(一)开篇
5.FFmpeg开发笔记(三十四)Linux环境给FFmpeg集成libsrt和librist
6.FFmpeg源码分析: AVStream码流
像格式--FFMPEG代码走读-TIFF格式编码
本文从FFMPEG源码角度解读TIFF编码内容,源码研究无需过多介绍,源码研究直接开启解读。源码研究TIFF编码涉及到的源码研究结构体TiffEncoderContext,用于存储与TIFF编码相关的源码研究题库网站源码 php上下文信息,包括编码上下文信息、源码研究长宽信息、源码研究压缩信息、源码研究yuv数据信息、源码研究缓冲区信息、源码研究Strip信息,源码研究以及编解码算法和级别信息等。源码研究
TIFF文件使用标签(Tags)存储图像的源码研究元数据和其他信息,每个标签存储特定类型的源码研究信息,如图像宽度、高度、颜色深度等。在FFMPEG中包含的所有tag相关数据可参照下图查看。
此外,还存在特定的补充标签,如DNG和CinemaDNG格式。DNG是由Adobe开发的一种开放的RAW图像格式,基于TIFF/EP标准,在TIFF基础上增加了存储更多摄影信息和元数据的特定标签。CinemaDNG是一个基于DNG的开放标准,专为**和视频制作中的RAW图像序列设计,包含与静态图像DNG类似的标签,同时增加了一些特定于视频和**制作的标签,用于管理处理高动态范围的RAW视频数据。
TIFF编码代码位于libavcodec\tiffenc.c文件中。ff_tiff_encoder描述了一个TIFF图像编码器,采用标准FFmpeg库的API封装,包含TIFF编码器的各种信息和函数指针,便于对接到FFMPEG框架。
encode_init函数用于初始化TIFF编码器上下文,并进行必要的检查和设置。encode_close函数在编码器关闭时进行资源清理,确保无内存泄漏。add_entry将一个条目添加到TIFF文件目录中。encode_strip用于将图像数据编码为TIFF文件的一个条带。pack_yuv将YUV图像数据打包成适合TIFF格式的条带。
encode_frame函数主要作用是将一帧图像编码为TIFF格式。具体步骤包括初始化上下文和变量、设置编码器上下文参数、处理不同像素格式、计算每行字节数和数据包大小、分配内存、处理图像数据、写入TIFF文件头、添加TIFF标签、帮呗源码写入目录偏移量并完成编码。
至此,TIFF编码过程解析完毕。源码编译与调试有助于深入理解,增进对TIFF编码的认识。
FFmpeg源码分析:视频滤镜介绍(上)
FFmpeg在libavfilter模块提供了丰富的音视频滤镜功能。本文主要介绍FFmpeg的视频滤镜,包括黑色检测、视频叠加、色彩均衡、去除水印、抗抖动、矩形标注、九宫格等。
黑色检测滤镜用于检测视频中的纯黑色间隔时间,输出日志和元数据。若检测到至少具有指定最小持续时间的黑色片段,则输出开始、结束时间戳与持续时间。该滤镜通过参数选项rs、gs、bs、rm、gm、bm、rh、gh、bh来调整红、绿、蓝阴影、基调与高亮区域的色彩平衡。
视频叠加滤镜将两个视频的所有帧混合在一起,称为视频叠加。顶层视频覆盖底层视频,输出时长为最长的视频。实现代码位于libavfilter/vf_blend.c,通过遍历像素矩阵计算顶层像素与底层像素的混合值。
色彩均衡滤镜调整视频帧的RGB分量占比,通过参数rs、gs、bs、rm、gm、bm、rh、gh、bh在阴影、基调与高亮区域进行色彩平衡调整。
去除水印滤镜通过简单插值抑制水印,仅需设置覆盖水印的ghost explorer源码矩形。代码位于libavfilter/vf_delogo.c,核心是基于矩形外像素值计算插值像素值。
矩形标注滤镜在视频画面中绘制矩形框,用于标注ROI兴趣区域。在人脸检测与人脸识别场景中,检测到人脸时会用矩形框进行标注。
绘制x宫格滤镜用于绘制四宫格、九宫格,模拟画面拼接或分割。此滤镜通过参数x、y、width、height、color、thickness来定义宫格的位置、大小、颜色与边框厚度。
调整yuv或rgb滤镜通过计算查找表,绑定像素输入值到输出值,然后应用到输入视频,实现色彩、对比度等调整。相关代码位于vf_lut.c,支持四种类型:packed 8bits、packed bits、planar 8bits、planar bits。
将彩色视频转换为黑白视频的滤镜设置U和V分量为,实现效果如黑白视频所示。
FFmpeg API深度解析:视频流画面合并、拼接与裁剪技巧
FFmpeg深度探索:视频流的魔术拼接、裁剪与融合技巧 1. 神奇拼接,艺术创作 将视频片段无缝连接,如同艺术创作,FFmpeg API提供强大的工具。av_read_frame如同探索宝箱,av_frame_alloc和av_frame_copy则是大师级的融合手法。了解这些函数,掌握视频流的编织艺术。 2. 无缝对接,画面融合 新闻直播与录播的无缝结合,FFmpeg为你提供关键步骤。首先,通过av_read_frame获取帧,然后用av_frame_alloc为合并帧备好画布,用av_frame_copy实现画面的无缝对接。注意帧大小和时间戳管理,以保证播放的流畅性。 3. 示例代码的炼金术extern "C" { ... // FFmpeg库头文件 ... int main() { ... // 初始化,炼制你的psd直播源码视频魔法 ... } }
这段代码揭示了如何在FFmpeg的世界中,通过av_frame_copy的精确操作,保持原始帧数据的完整性,为视频处理添加特效和水印。 4. av_frame_copy的精妙之处 复制帧数据时,务必注意像素格式、引用计数等问题,理解其背后的原理,以避免潜在问题。深入libavutil/frame.c源码,解锁复制技巧的奥秘。 5. 拼接艺术的实用技巧 对于高亮片段或视频组合,FFmpeg的API函数如av_interleaved_write_frame确保了时间顺序的连贯性,让视频片段的融合如诗如画。 6. 实践操作指南以av_read_frame起航,av_interleaved_write_frame完成视频拼接之旅。
从头到尾,保持清晰的逻辑和代码注释,实现高效与清晰的视频处理。
Linux内核中的多媒体设备交互代码提供了深入理解的窗口,就像《庄子》中“道生万物”的哲学启示。
通过细致的参数调整,如时间基准调整和质量优化,FFmpeg API让你在处理视频时游刃有余,无论是裁剪、拼接还是其他复杂任务,都能得心应手。 7. 结语 在FFmpeg的世界里,每一行代码都是一次艺术与技术的碰撞。掌握API,你就能驾驭视频流,创造出令人惊叹的作品。记住,知识是智慧的钥匙,谦逊是进步的阶梯。FFmpeg学习(一)开篇
为什么要学习FFmpeg?本人希望深入研究音视频领域,音视频领域内容丰富,我计划从多个方面逐步学习:FFmpeg常用功能实践、FFmpeg源码研究、OpenGL、OpenGLES、Metal、AR、WebRTC、直播架构等。
当前音视频有哪些应用场景?从众多应用场景可以看出,音视频技术至关重要,尤其在5G时代,网络传输问题得到极大提升,音视频需求将爆发式增长。以下是景安源码一个简单播放器架构图:
音频解码和视频解码一般使用FFmpeg解码,iOS8之后提供了VideoToolBox框架支持硬解码。视频渲染通常使用OpenGL直接利用GPU渲染,还有GPUImage、SDL、VLC等第三方框架。
音视频播放中的音视频同步是一项复杂的技术。学习一项技术需要高效的方法,只有不断实践才能深刻理解。学习FFmpeg也需要好的文档,以下列举一些必备的学习文档地址:
以上都是英文文档,如果英文学习困难,可以参考以下中文资料:
此外,推荐两本非常好的书籍:
相关学习资料推荐,点击下方链接免费报名,先码住不迷路~
1. FFmpeg简介:FFmpeg是一套用于记录、转换数字音频、视频并将其转化为流的开源计算机程序。采用LGPL或GPL许可证。它提供了录制、转换以及流化音视频的完整解决方案。它包含了非常先进的音频/视频编解码库libavcodec,为了保证高可移植性和编解码质量,libavcodec里很多code都是从头开发的。FFmpeg在Linux平台下开发,但也可以在其他操作系统环境中编译运行,包括Windows、Mac OS X等。这个项目最早由Fabrice Bellard发起,年至年间由Michael Niedermayer主要负责维护。许多FFmpeg的开发人员都来自MPlayer项目,当前FFmpeg也是放在MPlayer项目组的服务器上。项目的名称来自MPEG视频编码标准,前面的"FF"代表"Fast Forward"。
2. FFmpeg能做什么
3. FFmpeg架构模块组成:我们先看一张FFmpeg的架构图:
下载好的源码,我们也可以看到大致的源码结构:
3.1 libavutil
3.2 libavformat
FFmpeg是否支持某种媒体封装格式,取决于编译时是否包含了该格式的封装库。根据实际需求,可进行媒体封装格式的扩展,增加自己定制的封装格式,即在AVFormat中增加自己的封装处理模块。
3.3 libavcodec
AVCodec中实现了目前多媒体绝大多数的编解码格式,既支持编码,也支持解码。AVCodec除了支持MPEG4、AAC、MJPEG等自带的媒体编解码格式之外,还支持第三方的编解码器,如H.(AVC)编码,需要使用x编码器;H.(HEVC)编码,需要使用x编码器;MP3(mp3lame)编码,需要使用libmp3lame编码器。如果希望增加自己的编码格式或硬件编解码,则需要在AVCodec中增加相应的编解码模块。
3.4 libavfilter
3.5 libavdevice
3.6 libswscale
3.7 libpostproc
3.8 libswrressample
3.9 ffmpeg
3. ffsever
3. ffplay
4. FFmpeg安装:下载源码后,我们可以查看一下目录结构:
输入./configure --help命令查看配置信息
内容太多需要分页,输入./configure --help | more
从上面的帮助,我们可以尝试输入:./configure --list-decoders查看所有解码器
接下来我们可以尝试输入:./configure --list-encoders查看所有编码器
接下来我们可以尝试输入:./configure --list-filters查看所有滤镜器
接下来我们可以尝试输入:./configure --list-muxers查看FFmpeg的封装,封装Muxing是指将压缩后的编码封装到一个容器格式中,我们输入./configure --list-muxers来查看FFmpeg支持哪些容器格式:
从上面打印信息来看,FFmpeg支持生成裸流文件,如H.、AAC、PCM,也支持一些常见的格式,如MP3、MP4、FLV、M3U8、WEBM等。
从上面解封装又称为解复用格式的支持信息中可以看到,FFmpeg支持的demuxter非常多,包含image、MP3、FLV、MP4、MOV、AVI等。
从支持的协议列表中可以看到,FFmpeg支持的流媒体协议比较多,包括MMS、HTTP、HTTPS、HLS、RTMP、RTP,甚至支持TCP、UDP,它还支持使用file协议的本地文件操作和使用concat协议支持的多个文件串流操作。
接下来我们可以尝试输入:./configure --list-parsers查看FFmpeg支持的解析器
接下来我们可以尝试输入:./configure --list-bsfs查看FFmpeg支持的字节流过滤器
接下来我们可以尝试输入:./configure --list-indevs查看有效的输入设备
接下来我们可以尝试输入:./configure --list-outdevs查看有效的输出设备
FFmpeg开发笔记(三十四)Linux环境给FFmpeg集成libsrt和librist
本文介绍如何在Linux环境下集成FFmpeg以支持SRT和RIST协议。SRT全称为Secure Reliable Transport(安全可靠传输协议),RIST全称为Reliable Internet Stream Transport(可靠的互联网流传输协议)。这两种协议在年发布,其中SRT被腾讯视频云采纳并用于提高推流稳定性。 首先,需要安装支持SRT协议的libsrt库。libsrt的最新版本为年8月发布的libsrt-1.5.3,下载地址为github.com/Haivision/sr...。安装步骤如下:上传压缩包至服务器并解压。
进入解压后的srt目录,执行配置命令。
编译libsrt。
安装libsrt。
接下来,安装支持RIST协议的librist库。librist的最新版本为年月发布的librist-v0.2.,下载地址为code.videolan.org/rist/...。安装步骤包括:安装编译工具meson和ninja。
上传压缩包并解压。
进入解压后的build目录,配置librist。
编译librist。
安装librist。
集成SRT和RIST协议至FFmpeg需要重新配置FFmpeg,通过添加选项“--enable-libsrt --enable-librist”来启用这两个库。编译过程如下:回到FFmpeg源码目录,重新配置FFmpeg。
编译FFmpeg。
安装FFmpeg。
完成集成后,通过运行命令“ffmpeg -version”查看FFmpeg版本信息,确认是否正确启用了SRT协议的支持库libsrt和RIST协议的支持库librist。 以上步骤详细介绍了在Linux环境下给FFmpeg集成SRT和RIST协议的支持库,旨在提升流媒体应用的传输性能和稳定性。FFmpeg源码分析: AVStream码流
在AVCodecContext结构体中,AVStream数组存储着所有视频、音频和字幕流的信息。每个码流包含时间基、时长、索引数组、编解码器参数、dts和元数据。索引数组用于保存帧数据包的offset、size、timestamp和flag,方便进行seek定位。
让我们通过ffprobe查看mp4文件的码流信息。该文件包含5个码流,是双音轨双字幕文件。第一个是video,编码为h,帧率为.fps,分辨率为x,像素格式为yuvp。第二个和第三个都是audio,编码为aac,采样率为,立体声,语言分别为印地语和英语。第四个和第五个都是subtitle,语言为英语,编码器为mov_text和mov_text。
调试实时数据显示,stream数组包含以下信息:codec_type(媒体类型)、codec_id、bit_rate、profile、level、width、height、sample_rate、channels等编解码器参数。
我们关注AVCodecContext的编解码器参数,例如codec_type、codec_id、bit_rate、profile、level、width、height、sample_rate和channels。具体参数如下:codec_type - 视频/音频/字幕;codec_id - 编码器ID;bit_rate - 位率;profile - 编码器配置文件;level - 编码器级别;width - 宽度;height - 高度;sample_rate - 采样率;channels - 音道数。
AVStream内部的nb_index_entries(索引数组长度)和index_entries(索引数组)记录着offset、size、timestamp、flags和min_distance信息。在seek操作中,通过二分查找timestamp数组来定位指定时间戳对应的帧。seek模式有previous、next、nearest,通常使用previous模式向前查找。
时间基time_base在ffmpeg中用于计算时间戳。在rational.h中,AVRational结构体定义为一个有理数,用于时间计算。要将时间戳转换为真实时间,只需将num分子除以den分母。
FFmpeg开发笔记(十三)Windows环境给FFmpeg集成libopus和libvpx
本文将指导读者在Windows环境下,如何为FFmpeg集成libopus和libvpx,进而支持Opus音频编码与VP8/VP9视频编码。首先,介绍libopus的集成步骤。libopus是用于语音交互和音频传输的编码标准,其编解码器为libopus。下载最新版libopus源码,解压后执行配置命令./configure --prefix=/usr/local/libopus。接着,编译并安装libopus,确保环境变量PKG_CONFIG_PATH已包含libopus的pkgconfig路径。
随后,转向libvpx的集成。libvpx是VP8和VP9视频编码标准的编解码器。下载最新libvpx源码,解压并配置./configure --prefix=/usr/local/libvpx --enable-pic --disable-examples --disable-unit-tests,确保使用了--enable-pic选项以避免在编译FFmpeg时的错误。编译、安装libvpx后,同样更新PKG_CONFIG_PATH环境变量。
为了在FFmpeg中启用libopus和libvpx,需要重新编译FFmpeg。确保所有相关库的pkgconfig路径已加载至环境变量PKG_CONFIG_PATH中。通过命令./configure --prefix=/usr/local/ffmpeg --arch=x_ --enable-shared --disable-static --disable-doc --enable-libx --enable-libx --enable-libxavs2 --enable-libdavs2 --enable-libmp3lame --enable-gpl --enable-nonfree --enable-libfreetype --enable-sdl2 --enable-libvorbis --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-version3 --enable-libopus --enable-libvpx --enable-iconv --enable-zlib --extra-cflags='-I/usr/local/lame/include -I/usr/local/libogg/include -I/usr/local/amr/include' --extra-ldflags='-L/usr/local/lame/lib -L/usr/local/libogg/lib -L/usr/local/amr/lib' --cross-prefix=x_-w-mingw- --target-os=mingw重新配置FFmpeg,启用libopus与libvpx功能。接着,执行编译与安装命令,完成FFmpeg的集成。
最后,通过命令ffmpeg -version检查FFmpeg版本信息,确认是否成功启用libopus与libvpx。至此,FFmpeg已成功在Windows环境下集成了libopus和libvpx,支持Opus音频编码与VP8/VP9视频编码。此过程为视频处理应用提供了更丰富编码格式支持,提高了FFmpeg的多功能性与适应性。
FFMPEG详解(完整版)
FFMPEG详解
FFMPEG是自由软件中最完备的多媒体支持库,几乎涵盖了所有常见数据封装格式、多媒体传输协议以及音视频编解码器。对于多媒体技术开发工程师来说,深入研究FFMPEG是必不可少的。它的重要性如同kernel之于嵌入式系统工程师。FFMPEG的大部分代码遵循LGPL许可证,少部分遵循GPL许可证,因此其被广泛应用于各种第三方播放器和商业软件中,但需要注意在商业应用中可能涉及专利风险。
FFMPEG功能分为多个模块,如核心工具、媒体格式、编解码、设备和后处理模块,分别提供公用功能函数、实现多媒体文件读写、音视频编解码、设备操作以及音视频后处理。
FFMPEG提供命令行工具ffmpeg,其使用方法包含三部分:全局参数、输入文件参数、输出文件参数,每组输入参数以‘-i’结束,每组输出参数以文件名结束。
在使用FFMPEG时,需要熟悉基本选项、流标识、音频选项、视频选项等,同时,FFMPEG支持多种滤镜和高级选项,实现特定用例。
编译FFMPEG时,通过configure脚本实现定制和裁剪,以适应不同系统和需求。configure脚本生成的config.mak和config.h文件在Makefile和源代码层次上控制编译过程。
深入FFMPEG示例程序包括解码功能,实现复杂多媒体播放器的基础解复用、解码、数据分析过程。用户接口涉及数据结构、编解码器、媒体流和容器等概念,通过FFMPEG提供的AVFormatContext、AVStream、AVCodecContext等结构进行抽象。
时间信息在FFMPEG中用于实现多媒体同步,包括流内和流间同步。FFMPEG通过AVPacket结构为每个数据包打上时间标签,支持上层应用的同步机制。时间信息的获取和操作对于多媒体应用至关重要。
FFMPEG的API分为读系列、编解码系列和写系列,实现媒体数据的获取、编码、解码和输出。关键函数包括avformat_open_input、avformat_find_stream_info、av_read_frame等,用于文件输入、流信息查找和数据读取。
FFMPEG支持过滤链,通过AVFilter、AVFilterPad和AVFilterLink实现视频帧和音频采样数据的后续处理,如图像缩放、增强和声音重采样。
综上所述,FFMPEG是多媒体开发工程师不可或缺的工具,其功能强大且适用范围广泛,深入理解FFMPEG对于开发高性能多媒体应用至关重要。