1.TIOVX 源码学习: openvx理解
2.程序员如何学习源代码
3.学习vue源码(19)四探生命周期之初始化props
4.VGGish源码学习
5.看和学习源代码的学习源码好经验有哪些?
6.偷偷跟我学这个看源码的小技巧,早日解放双手
TIOVX 源码学习: openvx理解
学习TIOVX源码的学习源码关键在于理解其原理和实际应用。首先,学习源码需要参考专业资源了解OpenVX和TIOVX的学习源码基本概念。OpenVX是学习源码一种基于硬件抽象层的图像处理框架,其目的学习源码快速建块源码在于在不同硬件平台上提供统一的API接口,而TIOVX则是学习源码对OpenVX标准的实现,特别强调在DSP上的学习源码自定义开发。
在TIOVX中,学习源码用户可以利用User Kernel扩展OpenVX的学习源码功能,但仅限于CPU环境。学习源码为了弥补这一限制,学习源码TIOVX引入了Target Kernel概念,学习源码允许用户在DSP上进行自定义开发,学习源码从而提升特定任务的学习源码性能。
理解TIOVX源码时,可以从官网教程出发,通过官方提供的示例来掌握Target Kernel和User Kernel的编写、调度及生命周期管理。这包括在AddUserKernel中指定运行前、运行时和运行结束后执行的函数。
在实际应用中,TIOVX与OpenCV类似,都专注于图像处理,涉及上下文(Context)、图(Graph)和节点(Node)等概念。了解AppObj结构体,有助于更深入地理解TIOVX的内部运作。AppObj包含运行各阶段所需的变量,如TIDLObj用于管理网络参数、ImgMosaicObj用于图像参数、DisplayObj用于显示参数、ScalerObj用于图像列表相关变量。
为了更高效地学习和应用TIOVX,建议从TI官方提供的例子出发,详细阅读文档,理解结构体嵌套关系,以便在具体项目中调用API时更加得心应手。快修源码通过这些步骤,可以逐步掌握TIOVX源码的核心内容及其在实际项目中的应用。
程序员如何学习源代码
源代码的学习是一个从整体到不断细化的过程,在学习中不能想着一步到位,要慢慢的去深入。源代码作为软件的特殊部分,是程序员在工作中不能忽略的。想要学习源代码,你不妨按以下步骤试试。第一步,画出整个程序流程图,理解整个程序的思想。这个方式可以让人很直接的理解程序的整体流程,而不会被代码所干扰,让程序员从总体上把握程序。第二步,对流程各节点(函数或过程)的理解。流程的每一节点是构成整个流程的不可缺少的部份。第三步,把流程和流程各节点串起来理解整个程序,如果可以的话还可以记笔记总结下自己的经验。第四步,如果想深刻的学习到源代码的精髓所在,你可以写一些相近的程序进行操练。但是你理解了这个程序并不代表你掌握了这个程序,只有当你编写一个相近的程序时,你才知道自己到底理解了多少,掌握了多少。
学习vue源码()四探生命周期之初始化props
学习Vue源码()四探生命周期之初始化props 在探索Vue源码的旅程中,我们已经深入理解了created钩子函数触发前,beforeCreate触发后的initInjections和initProvide部分。现在,我们转向重点探讨initState的props部分,即初始化状态过程中的props环节。 在开发Vue应用时,状态管理是关键,包括props、源码平台gitdmethods、data、computed和watch等。在内部,这些状态需要在使用前进行初始化。 本文将详细介绍initProps函数的核心作用和实现步骤,以帮助读者全面理解props的初始化机制。初始化流程概览
在初始化过程中,一系列步骤确保了props在组件生命周期中的正确绑定和管理。具体流程如下: 新增属性_:Vue实例vm中新增一个属性_,用于存储所有与当前组件关联的watcher实例。无论是通过vm.$watch注册的watcher,还是通过watch选项添加的watcher实例,都将被添加至_中。 卸载watcher实例:通过访问vm._watchers,可以获取Vue实例中所有注册的watcher实例,并对它们进行一次性卸载,确保状态管理的高效性。 状态选择与初始化:用户在实例化Vue时使用了哪些状态,就将初始化哪些状态。例如,仅使用了data,则只需初始化data,忽略其他状态。 初始化顺序:按照特定顺序进行初始化:先初始化props,后初始化data,以确保data中的数据能够访问到props中的数据。在watcher中,既可以观察props,也可以观察data,因为它是在最后初始化的。 初始化状态:初始化流程分为五个子项,即初始化props、初始化methods、初始化data、初始化computed和初始化watch。初始化props详解
深入理解props的佳弗源码初始化机制对于掌握Vue组件的运作至关重要。本文将通过问题引导的方式,详细解析props如何从父组件传值到子组件,以及初始化过程中涉及的关键步骤。父组件如何传值给子组件的props
以根组件A及其子组件testb为例,场景设置如下:根组件A通过props(child-name)向子组件testb传值,将自身的parentName绑定到子组件的属性child-name上。步骤解析
设置props传值:在子组件testb中,通过接收props(child-name)来接受来自根组件A的传值。 父组件模板解析:父组件的模板被解析为模板渲染函数,执行时会将父组件的作用域绑定到模板函数中。 渲染函数执行:函数执行过程中,内部所有变量(包括props)均从父组件对象中获取,确保prop值正确传递。 子组件接收到props值:渲染函数执行后,将父组件传值到子组件的props属性child-name上。子组件保存并设置响应式props
子组件在接收到父组件赋值后的attrs后,通过筛选出props并保存至实例的_prop属性中,同时将每个props属性设置为响应式。这样一来,子组件便能根据变化的props值作出相应响应。props值处理
对于props值的处理,无论是数组还是对象形式,Vue均能自动进行标准化处理。通过normalizeProps函数,实现从数组或对象形式到标准对象形式的转换,确保所有props值以统一格式存在。结论
通过上述解析,我们深入了解了Vue源码中关于初始化props的过程与细节,从父组件传值、模板解析、props保存到设置响应式属性的整个流程。掌握这些机制有助于我们更高效地利用Vue构建复杂应用,同时理解状态管理的核心。VGGish源码学习
深入研究VGGish源码,该模型在模态视频分析领域颇为流行,尤其在生成语音部分的embedding特征向量方面。本文旨在基于官方源码进行学习。记账熊 源码
VGGish的代码库结构简洁,仅包含几个.py文件。文件大体功能明确,下文将结合具体代码进行详述。在开始之前,需要预先下载两个预训练文件,与.py文件放在同一目录。
VGGish的环境安装过程简便,对依赖包的版本要求宽松。只需依次执行安装命令,确保环境配置无误。运行vggish_smoke_test.py脚本,如显示"Looks Good To Me"则表明环境已搭建完成。
着手VGGish模型的拆解,以vggish_inference_demo.py中的main函数为起点,分为两大部分:数据准备与前向推理获得Embedding特征及特征后处理。
在数据准备阶段,首先确认输入是否为.wav文件,若非则自行生成。接着,使用vggish_input.py模块将输入数据调整为适用于模型的batch格式。假设输入音频长1分秒,采样频率为.1kHz,读取的wav_data为(,)的一维数组(若为双声道,则调整为单声道)。
进入前向推理阶段,初始化特征处理对象pproc及记录器对象writer。通过vggish_slim.py模块构建VGG模型,并加载预训练权重。前向推理生成维的embedding特征向量。值得注意的是,输入数据为[num_samples, , ]的三维数据,在推理过程中会增加一维[num_samples,num_frames,num_bins,1],最终经过卷积层提取特征,FC层压缩,得到的embedding_batch为[num_samples,]。
后处理环节中,应用PCA(主成分分析)对embedding特征进行调整。这一步骤旨在与YouTube-8M项目兼容,后者已发布用于数百万YouTube视频的PCA/whitened/quantized格式的音频和视觉嵌入。不过,若无需使用官方发布的AudioSet嵌入,则可直接使用网络输出的原始嵌入,无需进行PCA操作。
本文旨在为读者提供深入理解VGGish源码的路径,通过详述模型的构建、安装与应用过程,旨在促进对模态视频分析技术的深入学习与应用。
看和学习源代码的好经验有哪些?
首先,阅读源代码时,应通览代码,了解其基本功能和工作原理。识别出关键文件、函数与变量是至关重要的一步。
接着,识别代码依赖关系。注意代码所依赖的外部库或模块及其与主代码库的交互方式,这有助于深入理解整个系统结构。
评估代码复杂性。通过观察控制结构的嵌套深度、功能长度与代码冗余程度,可以判断代码的复杂性和可读性。
寻找常见的编码模式、设计原则和最佳实践。识别这些元素有助于学习如何编写高效、规范的代码。
搜索潜在错误、漏洞或逻辑错误。确保代码的稳定性和安全性是源代码分析中的关键步骤。
分析代码性能。识别性能瓶颈、内存泄漏或低效算法,以优化代码运行效率。
检查代码注释和文档的质量。这能帮助你理解开发者的设计思路和代码意图。
进行安全分析。对代码进行安全漏洞检测,如SQL注入、跨站脚本等,以确保代码的安全性。
考虑编写测试或使用静态代码分析工具,以验证代码行为和质量。这有助于提高代码的可靠性和可维护性。
提出重构建议,以优化代码结构和提高代码可读性。这一步骤有助于提高代码的可扩展性和可维护性。
推荐使用 CODEMAP源代码阅读器。这款工具通过代码编辑器平铺布局、跳转结构自动连线、手动添加高亮、标注等形式,使代码结构清晰易懂,尤其适用于分析复杂项目的框架结构。它能显著提升阅读源代码的效率。
了解更多相关演示内容,请查看以下链接:
/video/BV1V
偷偷跟我学这个看源码的小技巧,早日解放双手
大家好!
在看源码的过程中,查看 Git 提交记录是了解文件演变过程的有效途径。对于如何在 IDEA 中查看这些记录,可能有些同学感到困惑。这篇文章将分享一些实用的小技巧,帮助大家更直观地进行源码学习。
首先,确保你的本地环境配置了 Git。如果还没有安装 Git,强烈建议你先完成安装并熟悉基本操作。
接下来,使用 Git 克隆一个感兴趣的开源项目,例如 Redssion。在 IDEA 中导入项目并查看文件右键菜单,确认是否能找到“Git”选项。如果找不到,可能是 Git 配置问题,进入 IDEA 设置中进行相应的调整。
在 IDEA 的“Version Control”标签页中,你可以看到项目的提交历史。通过这个界面,你可以快速浏览文件的变更情况,了解代码的演变过程。
在日常工作中或撰写文章时,使用 IDEA 的 Git 功能主要关注提交记录,而不是直接在 IDEA 中进行代码提交。这种方式提供了可视化的代码历史,有助于理解代码的变更轨迹。
以 Redssion 为例,通过在 GitHub 的 issues 页面搜索关键词(如“死锁”),可以找到相关的问题讨论和代码修复。关注这些信息能帮助你更快定位问题和学习关键代码变更。
使用 IDEA 的 Git 插件,可以方便地查看特定日期的提交记录。在“Version Control”标签页中,通过过滤功能找到目标日期的提交,这样可以快速定位到关键变更。
通过查看提交记录,你可以了解代码的具体修改内容,这对于深入理解代码实现和调试问题非常有帮助。例如,在 Redssion 中,可以追踪到特定类的修改历史,了解其功能演进。
此外,通过查看项目的首次提交记录,可以了解项目的起源和发展历程。例如,Dubbo 的首次提交记录反映了项目早期的状态和开发团队的辛勤工作。这些历史记录不仅展示了技术演变,也蕴含了项目发展的故事。
总的来说,利用 IDEA 的 Git 功能探索代码历史,不仅可以帮助你更高效地学习和理解源码,还能深入了解项目的开发背景和演进过程。通过这种方式,源码阅读将变得更具趣味性和实用性。
学习vue源码(9)手写代码生成器
深入学习 vue 源码的系列文章中,我们探讨了模板编译的解析器与优化器部分。在本文中,我们将聚焦于代码生成器的实现原理与操作流程,以实现从 AST(抽象语法树)到 render 函数代码字符串的转换。
代码生成器在模板编译流程中承担着至关重要的角色,其核心任务是将由解析器和优化器处理得到的 AST 转换为可执行的 render 函数代码字符串。这一过程主要通过调用一系列预定义的函数(如 _c、_v、_s)来构建动态代码片段,从而实现模板的动态渲染。
具体而言,代码生成器依据 AST 结构,递归地生成代码片段。对于一个简单的模板,代码生成器会调用 _c 来创建元素,_v 来创建文本节点,而 _s 则用于返回字符串值。这些函数的调用构建了 render 函数的核心逻辑,实现了模板的动态渲染。
解析器负责将模板字符串转换为 AST,例如将上述简单的模板转换为对应的 AST 结构。通过调用代码生成器,可以将 AST 转换为可执行的 render 函数代码字符串。生成后的代码字符串中包含了 _c、_v、_s 等函数调用,这些函数对应着动态创建元素、文本节点以及返回字符串值的操作。
理解代码生成器的关键在于,它如何根据 AST 结构构建渲染函数代码。这一过程涉及到对 AST 中元素、文本和属性的遍历与处理,通过调用特定的生成函数(如 genData 和 genChildren)来构建数据和子节点,最终生成完整的 render 函数代码字符串。
在实现细节中,代码生成器会针对 AST 中的不同节点类型,采用不同的处理逻辑。例如,对于没有属性的节点(el.plain 为 true),代码生成器无需执行数据生成逻辑(genData),而直接跳过该步骤。这种处理方式优化了代码生成效率,确保了渲染函数代码的简洁与高效。
综上所述,代码生成器在模板编译流程中起到了关键作用,通过将 AST 转换为可执行的 render 函数代码,实现了模板的动态渲染。这一过程涉及对 AST 的递归遍历、函数调用构建以及特定逻辑的实现,构成了 vue 模板编译的核心机制。深入理解代码生成器的实现原理有助于开发者更好地掌握 vue 模板编译的底层机制,为开发高质量、高效的应用打下坚实的基础。