1.RocksDb 源码剖析 (1) | 如何混合 new 、源码mmap 设计高效内存分配器 arena ?源码
2.influxdb从原理到实战有哪些经验分享?
3.LevelDB 源码剖析1 -- 原理
4.FREE SOLO - 自己动手实现Raft - 16 - leveldb源码分析与调试-2
5.FREE SOLO - 自己动手实现Raft - 17 - leveldb源码分析与调试-3
6.mongodb内核源码实现、性能调优、源码最佳运维实践系列-表级qps及表级详细时延统计实现原理
RocksDb 源码剖析 (1) | 如何混合 new 、源码mmap 设计高效内存分配器 arena ?源码
本文旨在深入剖析RocksDb源码,从内存分配器角度着手。源码同城按摩服务app源码RocksDb内包含MemoryAllocator和Allocator两大类内存分配器。源码MemoryAllocator作为基类,源码提供MemkindKmemAllocator和JemallocNodumpAllocator两个子类,源码分别集成memkind和jemalloc库的源码功能,实现内存分配与释放。源码
接着,源码重点解析Allocator类及其子类Arena的源码实现。基类Allocator提供两个关键接口:内存分配与对齐。源码Arena类采用block为单位进行内存分配,源码先分配一个block大小的内存,后续满足需求时,优先从block中划取,以减少内存浪费。一个block的大小由kBlockSize参数决定。分配策略中,Arena通过两个指针(aligned_alloc_ptr_和unaligned_alloc_ptr_)分别管理对齐与非对齐内存,提高内存利用效率。
分配内存时,Arena通过构造函数初始化成员变量,包括block大小、内存在栈上的分配与mmap机制的使用。构造函数内使用OptimizeBlockSize函数确保block大小合理,减少内存对齐浪费。Arena中的内存管理逻辑清晰,尤其在分配新block时,仅使用new操作,无需额外内存对齐处理。
分配内存流程中,网站怎么制作源码AllocateNewBlock函数直接调用new分配内存,而AllocateFromHugePage和AllocateFallback函数则涉及mmap机制的使用与内存分配策略的统一。这些函数共同构成了Arena内存管理的核心逻辑,实现了灵活高效地内存分配。
此外,Arena还提供AllocateAligned函数,针对特定对齐需求分配内存。这一函数在使用mmap分配内存时,允许用户自定义对齐大小,优化内存使用效率。在处理对齐逻辑时,Arena巧妙地利用位运算优化计算过程,提高了代码效率。
总结而言,RocksDb的内存管理机制通过Arena类实现了高效、灵活的内存分配与管理。通过深入解析其源码,可以深入了解内存对齐、内存分配与多线程安全性的实现细节,为开发者提供宝贵的内存管理实践指导。未来,将深入探讨多线程内存分配器的设计,敬请期待后续更新。
influxdb从原理到实战有哪些经验分享?
深入解析InfluxDB源码中的数据写入细节,本次将关注数据解析、关键操作逻辑以及数据写入过程。首先回顾数据解析部分,解析流程遵循InfluxDB的行协议,基于状态机完成点数据的解析,包括扫描键、字段和时间戳。此过程中,解析状态机管理关键分界点,元气骑士秒杀源码如空白和逗号,用于准确识别键、标签和字段信息。
解析细节中,键值(measurement+tags)的解析分为两步:测量名和标签的提取。测量名通过查找第一个逗号和空白来确定边界,而标签则遵循类似逻辑,通过状态机逐步解析标签键和值,记录关键下标以定位标签的位置,确保解析过程高效且轻量级。
解析后,数据进行校验,检查标签是否按顺序排列,避免重复标签。通过插入排序对标签进行排序,同时检查重复标签,确保数据的完整性和一致性。此步骤通过状态机管理实现,优化了数据解析过程的效率。
完成解析后,点数据以切片形式返回,包含键、字段和时间戳信息。点数据的处理逻辑简洁,但重要的是理解状态机在解析过程中的应用,以及如何通过轻量级操作减少计算负担。
数据写入流程涉及元数据更新和点数据的实际写入。解析后,点数据映射到具体分片组的分片上,并执行分片的写入操作。分片写入逻辑包括锁机制以确保并发安全,以及验证系列和字段的有效性,更新索引,html优秀网页源码最后进行写入操作。此过程中,状态机和逻辑判断确保了操作的高效和准确性。
总结而言,InfluxDB在数据写入链路上采用了高效的状态机设计和轻量级的数据解析策略,同时通过元数据更新和并发安全措施确保数据完整性和一致性。解析细节和写入流程紧密相连,共同构成了InfluxDB高效数据处理的核心。
LevelDB 源码剖析1 -- 原理
LSM-Tree,全称Log-Structured Merge Tree,被广泛应用于数据库系统中,如HBase、Cassandra、LevelDB和SQLite,甚至MongoDB 3.0也引入了可选的LSM-Tree引擎。这种数据结构旨在提供优于传统B+树或ISAM(Indexed Sequential Access Method)方法的写入吞吐量,通过避免随机的本地更新操作实现。
LSM-Tree的核心思想基于磁盘性能的特性:随机访问速度远低于顺序访问,三个数量级的差距。因此,简单地将数据附加至文件尾部(日志或堆文件策略)可以提供接近理论极限的写入吞吐量。尽管这种方法足够简单且性能良好,但它有一个明显的缺点:从日志中随机读取数据需要花费更多时间,因为需要按时间顺序从近及远扫描日志直至找到所需键。因此,日志策略仅适用于简单的数据访问场景。
为了应对更复杂的读取需求,如基于键的搜索、范围搜索等,LSM-Tree引入了一种改进策略,通过创建一系列排序文件来存储数据,每次写入都会生成一个新的文件,同时保留了日志系统优秀的百万淘宝客源码写性能。在读取数据时,系统会检查所有文件,并定期合并文件以减少文件数量,从而提高读取性能。
在LSM-Tree的基本算法中,写入数据按照顺序保存到一组较小的排序文件中。每个文件代表了一段时间内的数据变更,且在写入前进行排序。内存表作为写入数据的缓冲区,用于保持键值的顺序。当内存表填满后,已排序的数据刷新到磁盘上的新文件。系统会周期性地执行合并操作,选择一些文件进行合并,以减少文件数量和删除冗余数据,同时维持读取性能。
读取数据时,系统首先检查内存缓冲区,若未找到目标键,则以反向时间顺序检查各个文件,直到找到目标键。合并操作通过定期将文件合并在一起,控制文件数量和读取性能,即使文件数量增加,读取性能仍可保持在可接受范围内。通过使用内存中保存的页索引,可以优化读取操作,尤其是在文件末尾保留索引块,这通常比直接二进制搜索更高效。
为了减少读取操作时访问的文件数量,新实现采用了分级合并(Leveled Compaction),即基于级别的文件合并策略。这不仅减少了最坏情况下需要访问的文件数量,还减少了单次压缩的副作用,同时提供更好的读取性能。分级合并与基本合并的主要区别在于文件合并的策略,这使得工作负载扩展合并的影响更高效,同时减少总空间需求。
FREE SOLO - 自己动手实现Raft - - leveldb源码分析与调试-2
本文聚焦于leveldb的写入机制,包括log的写入与memtable的写入过程。在深入分析之前,让我们回顾leveldb的核心数据结构,这将为后续的探讨提供直观的参考。
数据写入流程主要包括两个阶段:首先,将数据写入log,紧接着将数据写入memtable以供查询。
在log的写入过程中,数据经由一系列封装,最终通过调用log::Writer::AddRecord实现写入。在这一过程中,数据通过DBImpl::Put和DB::Put进行封装,最终由DBImpl::Write调用实现。
对于memtable的写入,数据同样经历DBImpl::Put和DB::Put的封装,随后由DBImpl::Write和MemTableInserter::Put进行处理,最后调用MemTable::Add完成写入。这一系列操作确保了数据的高效存储与检索。
数据读取方面,主要依赖于DBImpl::Get调用,通过MemTable::Get和SkipList::FindGreaterOrEqual操作在SkipList中进行搜索,实现从memtable中读取数据。同时,数据也可从sorted table中获取。
总结整个流程,本文主要梳理了数据写入与读取的调用栈,以及memtable与log在leveldb中的角色。下一次,我们将深入探讨大量数据写入后,内存与磁盘中数据状态的变化,以进一步理解leveldb的高效与可靠。
期待下次的分享,敬请关注!
FREE SOLO - 自己动手实现Raft - - leveldb源码分析与调试-3
leveldb的数据流动路径是单向的,从内存中的memtable流向不可变的memtable,最终写入到磁盘上的sorted table文件中。以下是几个关键状态的分析,来了解内存和磁盘上数据的分布。
以下是分析所涉及的状态:
1. 数据全在内存中
随机写入条数据,观察到数据全部存储在memtable中,此时还没有进行compaction操作。
2. 数据全在磁盘中
写入大量数据,并等待数据完全落盘后重启leveldb。此时,数据全部存储在磁盘中,分布在不同的level中。在每个level的sstable文件中,可以看到key的最大值与最小值。
3. 数据部分在内存中,部分在磁盘中
随机写入条数据,发现内存中的memtable已满,触发compaction操作,数据开始写入到sstable文件。同时,继续写入的数据由于还未达到memtable上限,仍然保存在内存中。
4. 总结
通过观察不同数据写入量导致的数据在内存与磁盘间的流动,我们可以看到leveldb内部状态的转换。
下篇文章将分析LRUCache数据状态的变化。敬请期待!
mongodb内核源码实现、性能调优、最佳运维实践系列-表级qps及表级详细时延统计实现原理
针对 MongoDB 内核源码实现中的表级 QPS(查询每秒操作数)及表级详细时延统计实现原理,本文将深入探讨其设计、核心代码实现以及最佳运维实践。作者为 OPPO 文档数据库 MongoDB 负责人,专注于分布式缓存、高性能服务端、数据库、中间件等相关研发工作,持续分享《MongoDB 内核源码设计、性能优化、最佳运维实践》。以下内容将围绕 MongoDB 内核中提供的数据导出及恢复工具(mongodump、mongorestore、mongoexport、mongoimport)、客户端 shell 链接工具(mongo)、IO 测试工具(mongoperf)以及流量 QPS/时延监控统计工具(mongostat、mongotop)进行分析。
Mongostat 和 mongotop 提供的监控统计功能虽然强大,但其功能局限性在于无法实现对表级 QPS 与详细时延的监控。为解决这一问题,MongoDB 实际上提供了内部实现的表级别统计接口。本文将详细解析这些接口的实现原理、核心代码以及如何应用到最佳运维实践中。
### 1. mongostat、mongotop 监控统计信息分析
Mongostat 和 mongotop 工具作为 MongoDB 的官方监控工具,分别提供了集群操作统计与表级别的读写时延统计。接下来,我们将深入探讨这些工具的使用方法、监控项以及功能实现。
#### 1.1 mongostat 监控统计分析
Mongostat 工具能够监控当前集群中各种操作的统计情况,包括增、删、改、查操作,以及 getMore(用于批量拉取数据时的游标操作)和 command(在 mongos 和 mongod 之间的命令处理)。了解 mongostat 帮助参数的详细说明,有助于更深入地掌握其功能。
#### 1.2 mongotop 监控统计分析
mongotop 则专注于对所有表的读写时延进行统计,并按照总耗时排序,直观地输出结果。分析 mongotop 监控输出项各字段的说明,可以帮助运维人员快速定位性能瓶颈。
### 2. 表级详细操作统计及其时延监控统计实现原理与核心代码
在 MongoDB 内核中,对表级别的增、删、改、查、getMore、command 进行了详细的操作统计,并对每种操作的时延进行了记录。每个表都拥有一个 CollectionData 结构,该结构中存储了所有操作统计和时延统计信息。核心代码定义了 UsageMap、CollectionData、UsageData 及 OperationLatencyHistogram 等关键类,以实现表级别的统计功能。
#### 2.1 表级统计实现原理
通过多层次的类结构分层,MongoDB 实现了表级别的详细统计。核心数据结构包括:UsageMap(使用 StringMap 表结构存储所有表名及其对应的表级统计信息)、CollectionData(包含锁统计、详细请求统计、汇总型统计)、以及 OperationLatencyHistogram(实现表级别的操作汇总统计与时延统计)。
#### 2.2 核心代码实现
MongoDB 表级详细统计实现主要集中在 src/mongo/db/stats 目录下的 top.cpp、top.h、operation_latency_histogram.cpp、operation_latency_histogram.h 四个文件中。其中,核心数据结构的代码实现展示了如何通过 UsageMap 结构存储所有表名及其统计信息,CollectionData 结构用于存储锁统计、详细请求统计和汇总型统计,而 OperationLatencyHistogram 类则实现了汇总型统计中的读、写、command 操作及对应时延统计。
### 3. 表级详细统计对外接口
为了便于运维人员使用表级统计信息,MongoDB 提供了对外接口,包括但不限于锁维度及请求类型维度相关统计接口与汇总型表级别统计接口。通过这些接口,运维人员可以执行特定命令获取表级别的锁统计、请求类型统计以及汇总型统计信息。
### 结论
本文通过深入解析 MongoDB 内核中的表级 QPS 及详细时延统计实现原理,详细介绍了核心代码实现以及对外提供的统计接口。了解这些实现细节对于优化数据库性能、进行高效运维具有重要意义。运维人员可以根据本文内容,结合实际应用场景,实施最佳实践,从而提高 MongoDB 的整体性能与稳定性。
打印源码json_打印源代码
柯文哲、侯友宜受邀同台!見面握手13秒 侯讚柯:是好學生
青岛万象城打造放心消费示范样板
政策下不來民意上不去|天下雜誌
cadlisp源码代码
中國舉重隊全主力參加世界盃