1.Android源码定制(3)——Xposed源码编译详解
2.Springboot之分布式事务框架Seata实现原理源码分析
3.Thrift入门 | Thrift框架分析(源码角度)
4.Mirror Networking网络框架源码学习
Android源码定制(3)——Xposed源码编译详解
Android源码定制(3)——Xposed源码编译详解
在前文中,框架框架我们完成了Android 6.0源码从下载到编译的源码源码过程,接下来详细讲解Xposed框架源码编译和定制。推荐推荐本文将基于编译后的设置Android 6.0环境,分为两部分:Xposed源码编译和源码定制,框架框架期间遇到的源码源码古晋溯源码燕窝问题主要得益于大佬的博客指导。首先,推荐推荐感谢世界美景大佬的设置定制教程和肉丝大佬的详细解答。1. Xposed源码编译
为了顺利编译,框架框架我们需要理解Xposed各模块版本和对应Android版本的源码源码关系,实验环境设为Android 6.0。推荐推荐首先,设置从Xposed官网下载XposedBridge,框架框架并通过Android Studio编译,源码源码推荐方式。推荐推荐编译过程涉及理解模块作用、框架初始化机制,以及mmm或Android Studio编译步骤。2. XposedBridge编译与集成
从官网下载XposedBridge后,编译生成XposedBridge.jar,可以选择mmm或Android Studio。编译后,-23的源码将XposedBridge.jar和api.jar分别放入指定路径,替换相应的系统文件。3. XposedArt与Xposed源码下载和替换
下载并替换Android系统虚拟机art文件夹和Xposed源码,确保Xposed首字母为小写以避免编译错误。4. XposedTools编译与配置
下载XposedTools,配置build.conf,解决编译时缺失的依赖包,如Config::IniFiles。5. 生成编译结果与测试
编译完成后,替换system目录,生成镜像文件并刷入手机,激活Xposed框架,测试模块以确保功能正常。6. 错误解决
常见错误包括Android.mk文件错误、大小写问题以及XposedBridge和Installer版本不匹配,通过查找和分析源码来修复。实验总结
在源码编译过程中,遇到的问题大多可通过源码分析和调整源码版本解决。务必注意版本兼容性,确保Xposed框架能顺利激活并正常使用。 更多详细资料和文件将在github上分享:[github链接]参考
本文由安全后厨团队原创,征途 源码分析如需引用请注明出处,未经授权勿转。关注微信公众号:安全后厨,获取更多相关资讯。Springboot之分布式事务框架Seata实现原理源码分析
在SpringBoot环境下的分布式事务框架Seata实现原理涉及到了代理数据源、注册代理Bean以及全局事务拦截器等关键环节。下面我们将逐步解析其核心逻辑。
首先,Seata通过GlobalTransactionScanner来注册项目中所有带有@GlobalTransactional注解的方法类。该扫描器是一个实现了BeanPostProcessor接口的类,它能够在Spring容器初始化时进行后置处理,从而实现全局事务的管理。
GlobalTransactionScanner实际上是一个InstantiationAwareBeanPostProcessor,它在实例化Bean前执行postProcessBeforeInstantiation方法,在实例化后执行postProcessAfterInstantiation方法,并在属性填充时执行postProcessProperties方法。尽管GlobalTransactionScanner类本身并未覆盖这3个方法,但在父类的实现中,这些方法用于处理Bean的实例化和属性设置过程。
关键在于postProcessAfterInitialization方法中实现的wrapIfNecessary方法,该方法在GlobalTransactionScanner类中被重写。ble scanner 源码当方法执行到existsAnnotation方法判断类方法是否带有@GlobalTransactional注解时,如果存在则创建一个GlobalTransactionalInterceptor作为拦截器处理全局事务。
在创建代理数据源时,Seata通过DataSourceProxy对系统默认数据源进行代理处理。通过shouldSkip方法判断当前bean是否需要被代理,如果bean是SeataProxy的子类且不是DataSource的子类且不在excludes集合中,则进行代理,从而代理当前系统的默认数据源对象。
全局事务拦截器主要负责全局事务的发起、执行和回滚。在执行全局事务的方法被代理时,具体的执行拦截器是GlobalTransactionalInterceptor。该拦截器处理全局事务的逻辑,包括获取全局事务、开始全局事务、执行本地业务、提交本地事务、记录undo log、提交数据更新等步骤。其中,提交本地事务时会向TC(Transaction Coordinator)注册分支并提交本地事务,淘宝wap源码整个过程确保了分布式事务的一致性。
当全局事务中任何一个分支发生异常时,事务将被回滚。参与全局事务的组件在异常发生时执行特定的回滚逻辑,确保事务一致性。在Seata的实现中,异常处理机制确保了事务的回滚能够正确执行。
Seata还提供了XID(Transaction Identifier)的传递机制,通过RestTemplate和Feign客户端进行服务间的调用,确保分布式系统中各个服务能够共享和处理全局事务。RestTemplate在请求头中放置TX_XID头信息,而Feign客户端通过从调用链中获取Feign.Builder,最终通过SeataHystrixFeignBuilder.builder方法实现XID的传递。
在被调用端(通过Feign调用服务),Seata自动配置会创建数据源代理,使得事务方法执行时能够获取到连接对象,而这些连接对象已经被代理成DataSourceProxy。SeataHandlerInterceptor拦截器对所有请求进行拦截,从Header中获取TX_XID,参与者的XID绑定到上下文中,通过ConnectionProxy获取代理连接对象。在数据库操作中,XID绑定到ConnectionContext,执行SQL语句时通过StatementProxy或PreparedStatementProxy代理连接,从而完成全局事务的处理。
综上所述,Seata通过一系列复杂的逻辑和机制,实现了SpringBoot环境下的分布式事务管理,确保了分布式系统中数据的一致性和可靠性。
Thrift入门 | Thrift框架分析(源码角度)
深入理解Thrift框架,首先需要掌握其基本概念。Thrift是一个用于跨语言通信的框架,其设计初衷是提高开发效率和简化多语言环境下的服务调用。以下是Thrift框架的核心组成部分及其功能概述。 Thrift框架主要包括两个层:Protocol层和Transport层。Protocol层主要负责数据的序列化和反序列化,而Transport层则负责数据流的传输。Protocol层中包含多种序列化协议,常见的有Compact、Binary、JSON等,它们都继承自TProtocol基类,提供读写抽象操作。 以TBinaryProtocol为例,它是一种基于二进制的序列化协议。序列化过程主要包括以下几个关键步骤:writeMessageBegin:用于序列化message的开始部分,包括thrift版本、message名称和seqid等信息。
writeFieldStop:在所有字段序列化完成后,写入T_STOP标识符,表示序列化结束。
writeI、writeString、writeBinary:分别用于序列化整型、字符串和二进制数据。
在读取操作中,这些write操作的逆操作被执行,以实现反序列化。Protocol层的实现细节主要体现在读写函数的调用和抽象上。 Transport层负责数据的实际传输,它提供了一系列抽象方法,如isOpen、open、close、read和write等,用于管理底层连接的打开、关闭和数据读写。常见的Transport层协议包括TFramedTransport和TSocket。TFramedTransport通过缓冲区管理,实现了数据的分帧传输,而TSocket则基于原始的socket实现网络通信。 为了进一步提高性能,Transport层可能包含缓存和压缩等功能,以优化数据传输效率。Thrift中,TSocket作为底层传输层,负责与原始socket交互,而TFramedTransport等上层Transport则在TSocket的基础上进行扩展,实现数据的高效传输。 总结,Thrift框架通过其Protocol层和Transport层,实现了跨语言、高效的数据传输。深入理解这些组件及其工作原理,对于开发和优化基于Thrift的分布式系统具有重要意义。Mirror Networking网络框架源码学习
在游戏开发领域,特别是多人在线游戏的制作,网络框架的选择与理解至关重要。本文将带领大家了解并学习Mirror网络框架,这是UNET的替代品,帮助开发者更好地掌握Unity项目内容。Mirror提供了强大的网络功能,使得客户端和服务端逻辑集成在同一个系统中。
对于Mirror框架,CMD(Command)和RPC(Remote Procedure Call)是核心功能。CMD允许开发者在客户端和服务端之间传递命令,而RPC则允许远程调用服务端方法,实现异步通信。这些标签用于区分客户端与服务端的代码逻辑。
例如在Examples/Chat中,通过设置一个端作为服务器,其他端连接到localhost作为客户端,可以实现基本的聊天功能。值得注意的是,这个案例中的数据同步机制,尤其是SyncVar的作用,对于理解如何在客户端和服务端之间共享和同步数据至关重要。
SyncVar通过编译后处理和Update驱动同步实现数据的实时同步。在编译后处理阶段,通过SerializeSyncVars初始化所有SyncVar,并在逐帧更新中驱动同步过程,确保数据在客户端和服务端保持一致。
在服务器监听部分,以KcpTransport为例,分为初始化绑定、接收更新数据和业务处理。这一流程展示了如何在服务器端接收和处理网络数据,确保游戏逻辑的正确执行。
为了进一步深入学习,推荐查阅以下资源:
- Unity3D-network网络相关(一)_alayeshi的专栏-CSDN博客
- Unity3D-network网络相关(二)_alayeshi的专栏-CSDN博客
- 交大计算机课程(5):计算机网络
- GitHub - vis2k/Mirror: #1 Open Source Unity Networking Library
- Mirror Documentation
- Unity 使用Mirror框架制作多人游戏
- MirrorNetworking
通过这些资源,开发者可以全面了解Mirror网络框架的使用方法,从而在多人游戏开发中获得更多的灵活性和控制力。