【求购星火草原源码】【价值持仓副图源码】【波段买入主图源码】ransac源码

来源:源码度娘

1.OpenMVG——(七)初始化
2.一文详解头部位姿估计收藏好文
3.SIFT算法原理与源码分析

ransac源码

OpenMVG——(七)初始化

       在上一讲中,源码我们介绍了与Tracks相关的源码概念,构建了帧间的源码数据关联。为了确保运动估计和场景重建的源码稳定性与准确性,一种可靠且高效的源码初始化策略至关重要。开放源代码库OpenMVG提供了两种不同的源码求购星火草原源码初始化策略以适应不同场景。

       OpenMVG采用了一个基类SfmSceneInitializer来实现这两种策略,源码它们都继承自SfmSceneInitializer,源码这使得C++的源码多态性能够在调用时提供良好的适应性。

       首先,源码我们探讨基于两帧初始化的源码策略——SfmSceneInitializerMaxPair。该方案在实现中位于特定路径下,源码其核心在于选取质量最高的源码两帧作为初始化依据。衡量标准是源码特征匹配的数量,通过构建一个按照匹配特征点数量降序排列的源码容器packet_vec,并借助sort_index_helper方法进行排序。

       在对排序后的图像对进行遍历时,OpenMVG会逐一验证视图和相机参数的有效性,然后提取所有匹配特征点的坐标,并基于这些数据计算相对运动。具体来说,使用AC-RANSAC方法进行运动模型的估计,这一过程实质上是通过迭代(次)来计算Essential Matrix。在估计运动模型后,OpenMVG使用SVD分解从Essential Matrix中恢复出旋转和平移信息,并通过三角化匹配对和统计内点数量来确定最终的解。

       值得注意的是,为了确保模型的可靠性,OpenMVG在选择最终解时添加了一个约束条件,要求最优模型的内点数量至少要比次优的内点数量多一定比例。这一条件与最近邻比例法进行匹配对筛选的原理类似。

       在实际应用中,OpenMVG的价值持仓副图源码初始化策略不仅仅局限于SfmSceneInitializerMaxPair。为了提供更鲁棒的初始化,还引入了基于星型的初始化方案——SfmSceneInitializerStellar。在实现中,OpenMVG通过查找最佳匹配对来优化初始化过程。与MaxPair方案不同的是,Stellar策略首先将具有相同图像ID的图像对集合到一个map容器中,然后计算所有图像对的平均特征匹配数量,选择平均匹配数量最多的集合作为初始化stellar。

       接下来,OpenMVG对选择出的stellar集合中的图像对进行三角化及相对姿态估计,并结合BA优化以得到更精确的相对姿态。在这一阶段,OpenMVG可能遇到一个潜在的代码错误,需要读者在实际应用中进行验证并修正。

       这两种初始化策略在OpenMVG中分别通过不同的函数调用实现。在调用过程中,OpenMVG会基于输入参数,如图像对、特征匹配数量等,执行不同的初始化步骤,以适应不同数据集的特性。

       从实践角度出发,基于stellar的初始化方法通常展现出更高的鲁棒性,但maxPair方法的初始化难度较低,适合在数据集较为简单或对计算效率有较高要求的情况下使用。读者应根据自己的数据集类型选择合适的初始化方式。

       在下一讲中,我们将深入探讨序列SFM(Sequence Structure from Motion)的相关内容,敬请期待!

一文详解头部位姿估计收藏好文

       在许多应用中,我们需要知道头部相对于相机是如何倾斜的。例如,波段买入主图源码在虚拟现实应用程序中,可以使用头部的姿势来渲染场景的正确视图。在驾驶员辅助系统中,汽车上的摄像头可以观察驾驶员的面部,通过头部姿态估计来判断驾驶员是否在关注道路。当然,人们也可以使用基于头部姿势的手势来控制免提应用程序。

       本文中我们约定使用下面术语,以免混淆。位姿:英文是pose,包括位置和姿态。位置:英文是location。:英文是photo,本文中用来指一幅照片。图像:英文是image,本文中用在平面或坐标系中,例如image plane指图像平面,image coordinate system指图像坐标系统。旋转:英文是rotation。平移:英文是translation。变换:英文是transform。投影:英文是project。

       什么是位姿估计?在计算机视觉中,物体的姿态是指物体相对于相机的相对方向和位置。你可以通过物体相对于相机移动,或者相机相对于物体移动来改变位姿。—— 这二者对于改变位姿是等价的,因为它们之间的关系是相对的。本文中描述的位姿估计问题通常被称为“Perspective-n-Point” 问题,或计算机视觉中的PnP问题。PnP问题的目标是找到一个物体的位姿,我们需要具备两个条件:条件1:有一个已经校准了的kdjcci副图指标源码相机;条件2:我们知道物体上的n个3D点的位置locations和这些3D点在图像中相应的2D投影。

       如何在数学上描述相机的运动?一个3D刚体(rigid object)仅有2种类型的相对于相机的运动。第一种:平移运动(Translation)。平移运动是指相机从当前的位置location其坐标为(X, Y, Z)移动到新的坐标位置(X‘, Y’,Z‘)。平移运动有3个自由度——各沿着X,Y,Z三个轴的方向。平移运动可以用向量t = (X’-X, Y’-Y, Z’-Z)来描述。第二种:旋转运动(Rotation)。是指将相机绕着X,Y,Z轴旋转。旋转运动也有3个自由度。有多种数学上的方法描述旋转运动。使用欧拉角(横摇roll, 纵摇pitch, 偏航yaw)描述,使用3X3的旋转矩阵描述,或者使用旋转方向和角度(directon of rotation and angle)。

       进行位姿估计时你需要什么?为了计算一幅图像中一个刚体的3D位姿,你需要下面的信息:信息1:若干个点的2D坐标。你需要一幅图像中若干个点的2D(x, y)位置locations。在人的面部这个例子中,你可以选择:眼角、鼻尖、嘴角等。在本文中,我们选择:鼻尖、下巴、左眼角、右眼角、未来趋势主图源码左嘴角、右嘴角等6个点。信息2:与2D坐标点一一对应的3D位置locations。你需要2D特征点的3D位置locations。信息3:相机的内参。正如前文说提到的,在这个PnP问题中,我们假定相机已经被标定了。换句话说,你需要知道相机的焦距focal length、图像的光学中心、径向畸变参数。

       位姿估计算法是如何工作的?有很多的位姿估计算法,最有名的可以追溯到年。该算法的详细讨论超出了本文的讨论范围。这里只给出其简要的核心思想。该位姿估计PnP问题涉及到3个坐标系统。(1)世界坐标系。前面给出的各个面部特征的3D点就是在世界坐标系之中;(2)如果我们知道了旋转矩阵R和平移向量t,我们就能将世界坐标系下的3D点“变换Transform”到相机坐标系中的3D点。(3)使用相机内参矩阵,能将相机坐标系中的3D点能被投影到图像平面image plane, 也就算图像坐标系统image coordinate system。整个问题就是在3个坐标系统中玩耍:3D的世界坐标系World coordiantes、3D的相机坐标系Camera coordinates、2D的图像坐标系Image coordinates。下面,我们来深入研究图像生成方程式,以理解上述三个坐标系是如何工作的。

       在上述中,左下角的O是相机的中心,中间的平面Image Plane就是像平面,我们感兴趣的是找出“将3D点P投影到像平面中点p的方程式”。首先,我们假设已经知道了位于世界坐标系中3D点P的位置(U,V,W),如果我们还知道了世界坐标系相对于相机坐标系之间的旋转矩阵R和平移向量t,通过下面方程式,就能计算出点P在相机坐标系下的位置(X,Y,Z)。

       下面,我们来深入研究图像生成方程式,以理解上述三个坐标系是如何工作的。在上述中,左下角的O是相机的中心,中间的平面Image Plane就是像平面,我们感兴趣的是找出“将3D点P投影到像平面中点p的方程式”。首先,我们假设已经知道了位于世界坐标系中3D点P的位置(U,V,W),如果我们还知道了世界坐标系相对于相机坐标系之间的旋转矩阵R和平移向量t,通过下面方程式,就能计算出点P在相机坐标系下的位置(X,Y,Z)。

       正如将在下面章节讲述的,我们知道(X, Y, Z)只在一个未知的尺度上或者说(X, Y, Z)仅由一个未知的尺度所决定,所以我们没有一个简单的线性系统。

       直接线性变换(Direct Linear Transform)我们已经知道了3D模型世界坐标系中的很多点也就是(U,V,W),但是,我们不知道(X, Y, Z)。我们只知道这些3D点对应的2D点在图像平面Image Plane中的位置也就是(x, y)。在不考虑畸变参数的情况下,像平面中点p的坐标(x,y)由下面的方程式(3)给出。方程式(3)中的s是什么?它是一个未知的尺度因子scale factor。由于在图像中我们没有点的depth信息,所以这个s必须存在于方程中。引入s是为了表示:图2中射线O-P上的任何一点,无论远近,在像平面Image Plane上的都是同一个点p。也就是说:如果我们将世界坐标系中的任何一点P与相机坐标系的中心点O连接起来,射线O-P与像平面Image Plane的交点就是点P在像平面上的像点p,该射线上的任何一点P,都将在像平面上产生同一个像点p。现在,上面这些讨论已经将方程式(2)搞复杂了。因为这已经不是我们所熟悉的、能解决的一个“好的线性方程”了。我们方程看起来更像下面的形式。不过,幸运的是,上面形式的方程,可以使用一些“代数魔法”来解决——直接线性变换(DLT)。当你发现一个问题的方程式“几乎是线性的,但又由于存在未知的尺度因子,造成该方程不完全线性”,那么你就可以使用DLT方法来求解。

       列文伯格-马夸尔特优化算法(Levenberg-Marquardt Optimization)由于下面的一些原因,前面阐述的DLT解决方案并不能非常精确地求解。第一:旋转向量R有3个自由度,但是DLT方案中使用的矩阵描述有9个数,DLT方案中没有任何措施“强迫估计后得到的3X3的矩阵变为一个旋转矩阵”。更重要的是:DLT方案没有“正确的目标函数”。的确,我们希望能最小化“重投影误差reprojection error”,正如下面将要讲的。

       对于方程式(2)和方程式(3),如果我们知道正确的位姿(矩阵R和向量t),通过将3D点投影到2D像平面中,我们能预测到3D面部点的2D点在图像中的位置locations。换而言之,如果我们知道R和t,对于每一个3D点P,我们都能在像平面上找到对于的点p。我们也知道了2D面部特征点通过Dlib或者手工点击给出。我们可以观察被投影的3D点和2D面部特征之间的距离。当位姿估计结果是准确的时候,被投影到像平面Image Plane中的3D点将与2D面部特征点几乎完美地对齐。但是,当位姿估计不准确时,我们可以计算“重投影误差reprojection error”——被投影的3D点和2D面部特征点之间的距离平方和。

       位姿(R和t)的近似估计可以使用DLT方案。改进DLT解决方案的一个简单方法是随机“轻微”改变姿态(R和t),并检查重投影误差是否减小。如果的确减小了,我们就采用新的估计结果。我们可以不断地扰动R和t来找到更好的估计。尽管这种方法可以工作,但是很慢。可以证明,有一些基本性的方法可以通过迭代地改变R和t的值,从而降低重投影误差。——其中之一就是所谓的“列文伯格-马夸尔特优化算法”。在OpenCV中,有两种用于位姿估计的API:solvePnP和solvePnPRansac。solvePnP实现了几种姿态估计算法,可以使用参数进行选择不同的算法。默认情况下,它使用标志SOLVEPNP_ITERATIVE,其本质上是DLT解决方案,然后是列文伯格-马夸尔特算法进行优化。SOLVEPNP_P3P只使用3个点来计算姿势,并且应该只在使用solvePnPRansac时使用。在OpenCV3中,引入了SOLVEPNP_DLS和SOLVEPNP_UPNP两种新方法。关于SOLVEPNP_UPNP有趣的事情是,它在估计位姿时,也试图估计相机内部参数。solvePnPRansac中的“Ransac”是“随机抽样一致性算法Random Sample Consensus”的意思。引入Ransac是为了位姿估计的鲁棒性。当你怀疑一些数据点是噪声数据的时候,使用RANSAC是有用的。

       样例CMakeLists.txt文件:文件:源代码:OAK中国|追踪AI技术和产品新动态公众号|OAK视觉人工智能开发点「这里」添加微信好友(备注来意)戳「+关注」获取最新资讯↗↗

SIFT算法原理与源码分析

       SIFT算法的精密解析:关键步骤与核心原理

       1. 准备阶段:特征提取与描述符生成

       在SIFT算法中,首先对box.png和box_in_scene.png两张图像进行关键点检测。利用Python的pysift库,通过一系列精细步骤,我们从灰度图像中提取出关键点,并生成稳定的描述符,以确保在不同尺度和角度下依然具有较高的匹配性。

       2. 高斯金字塔构建

       计算基础图像的高斯模糊,sigma值选择1.6,先放大2倍,确保模糊程度适中。

       通过连续应用高斯滤波,构建高斯金字塔,每层图像由模糊和下采样组合而成,每组octave包含5张图像,从底层开始,逐渐减小尺度。

       3. 极值点检测与极值点定位

       在高斯差分金字塔中寻找潜在的兴趣点,利用邻域定义,选择尺度空间中的极值点,这些点具有旋转不变性和稳定性。

       使用quadratic fit细化极值点位置,确保匹配点的精度。

       4. 特征描述与方向计算

       从细化的位置计算关键点方向,通过梯度方向和大小统计直方图,确定主次方向,以增强描述符的旋转不变性。

       通过描述符生成过程,旋转图像以匹配关键点梯度与x轴,划分x格子并加权叠加,生成维的SIFT特征描述符。

       5. 精度校验与匹配处理

       利用FLANN进行k近邻搜索,执行Lowe's ratio test筛选匹配点,确保足够的匹配数。

       执行RANSAC方法估计模板与场景之间的homography,实现3D视角变化适应。

       在场景图像上标注检测到的模板并标识SIFT匹配点。

       SIFT的独特性:它提供了尺度不变、角度不变以及在一定程度上抵抗3D视角变化的特征,是计算机视觉领域中重要的特征检测和描述算法。

文章所属分类:百科频道,点击进入>>