【ub下载源码】【小迪渗透源码】【快活林源码】python描述器源码_python 描述器

时间:2024-11-14 03:24:05 来源:积分墙 源码 编辑:招标发布平台源码

1.如何理解python的描述码pn描sqlalchemy这种orm框架?
2.说说 Python 的元编程
3.程序中的类是什么?

python描述器源码_python 描述器

如何理解python的sqlalchemy这种orm框架?

       关系数据库由表组成,表包含行和列,器源每行代表一条记录,述器每列对应一个属性。描述码pn描如学生信息表,器源记录学生姓名、述器ub下载源码年龄、描述码pn描入学时间等属性。器源

       Python中类、述器实例对象与成员属性概念与orm映射。描述码pn描orm将表映射为类,器源类包含成员属性作为模板,述器通过模板赋值创建实例对象,描述码pn描对应一条记录。器源常用SQL操作封装为方法,述器如select操作封装为get方法。

       自写orm时,需理解元类和描述器知识。元类用于定义类的小迪渗透源码创建过程,描述器用于实现属性的动态行为。

       更多信息可自行查阅Google资料或浏览GitHub上他人实现的轻量级orm库。

说说 Python 的元编程

       æåˆ°å…ƒè¿™ä¸ªå­—,你也许会想到元数据,元数据就是描述数据本身的数据,元类就是类的类,相应的元编程就是描述代码本身的代码,元编程就是关于创建操作源代码(比如修改、生成或包装原来的代码)的函数和类。主要技术是使用装饰器、元类、描述符类。

       æœ¬æ–‡çš„主要目的是向大家介绍这些元编程技术,并且给出实例来演示它们是怎样定制化源代码的行为。

       è£…饰器 装饰器就是函数的函数,它接受一个函数作为参数并返回一个新的函数,在不改变原来函数代码的情况下为其增加新的功能,比如最常用的计时装饰器:

from functools import wrapsdef timeit(logger=None):"""耗时统计装饰器,单位是秒,保留 4 位小数"""def decorator(func):@wraps(func)def wrapper(*args, **kwargs):start = time.time()result = func(*args, **kwargs)end = time.time()if logger:logger.info(f"{ func.__name__} cost { end - start :.4f} seconds")else:print(f"{ func.__name__} cost { end - start :.4f} seconds")return resultreturn wrapperreturn decorator

       (注:比如上面使用 @wraps(func) 注解是很重要的, 它能保留原始函数的元数据) 只需要在原来的函数上面加上 @timeit() 即可为其增加新的功能:

@timeit()def test_timeit():time.sleep(1)test_timeit()#test_timeit cost 1. seconds

       ä¸Šé¢çš„代码跟下面这样写的效果是一样的:

test_timeit = timeit(test_timeit)test_timeit()

       è£…饰器的执行顺序 当有多个装饰器的时候,他们的调用顺序是怎么样的?

       å‡å¦‚有这样的代码,请问是先打印 Decorator1 还是 Decorator2 ?

from functools import wrapsdef decorator1(func):@wraps(func)def wrapper(*args, **kwargs):print('Decorator 1')return func(*args, **kwargs)return wrapperdef decorator2(func):@wraps(func)def wrapper(*args, **kwargs):print('Decorator 2')return func(*args, **kwargs)return wrapper@decorator1@decorator2def add(x, y):return x + yadd(1,2)# Decorator 1# Decorator 2

       å›žç­”这个问题之前,我先给你打个形象的比喻,装饰器就像函数在穿衣服,离它最近的最先穿,离得远的最后穿,上例中 decorator1 是外套,decorator2 是内衣。

       add = decorator1(decorator2(add))

       åœ¨è°ƒç”¨å‡½æ•°çš„时候,就像脱衣服,先解除最外面的 decorator1,也就是先打印 Decorator1,执行到 return func(

       args, kwargs) 的时候会去解除 decorator2,然后打印 Decorator2,再次执行到 return func(

       args, kwargs) 时会真正执行 add() 函数。

       éœ€è¦æ³¨æ„çš„是打印的位置,如果打印字符串的代码位于调用函数之后,像下面这样,那输出的结果正好相反:

def decorator1(func):@wraps(func)def wrapper(*args, **kwargs):result = func(*args, **kwargs)print('Decorator 1')return resultreturn wrapperdef decorator2(func):@wraps(func)def wrapper(*args, **kwargs):result = func(*args, **kwargs)print('Decorator 2')return resultreturn wrapper

       è£…饰器不仅可以定义为函数,也可以定义为类,只要你确保它实现了__call__() 和 __get__() 方法。

       å…ƒç±» Python 中所有类(object)的元类,就是 type 类,也就是说 Python 类的创建行为由默认的 type 类控制,打个比喻,type 类是所有类的祖先。我们可以通过编程的方式来实现自定义的一些对象创建行为。

       å®šä¸€ä¸ªç±»ç»§æ‰¿ type ç±» A,然后让其他类的元类指向 A,就可以控制 A 的创建行为。典型的就是使用元类实现一个单例:

class Singleton(type):def __init__(self, *args, **kwargs):self._instance = Nonesuper().__init__(*args, **kwargs)def __call__(self, *args, **kwargs):if self._instance is None:self._instance = super().__call__(*args, **kwargs)return self._instanceelse:return self._instanceclass Spam(metaclass=Singleton):def __init__(self):print("Spam!!!")

       å…ƒç±» Singleton 的__init__和__new__ 方法会在定义 Spam 的期间被执行,而 __call__方法会在实例化 Spam 的时候执行。

       descriptor 类(描述符类)

       descriptor 就是任何一个定义了 __get__(),__set__()或 __delete__()的对象,描述器让对象能够自定义属性查找、存储和删除的操作。这里举官方文档[1]一个自定义验证器的例子。

       å®šä¹‰éªŒè¯å™¨ç±»ï¼Œå®ƒæ˜¯ä¸€ä¸ªæè¿°ç¬¦ç±»ï¼ŒåŒæ—¶è¿˜æ˜¯ä¸€ä¸ªæŠ½è±¡ç±»ï¼š

from abc import ABC, abstractmethodclass Validator(ABC):def __set_name__(self, owner, name):self.private_name = '_' + namedef __get__(self, obj, objtype=None):return getattr(obj, self.private_name)def __set__(self, obj, value):self.validate(value)setattr(obj, self.private_name, value)@abstractmethoddef validate(self, value):pass

       è‡ªå®šä¹‰éªŒè¯å™¨éœ€è¦ä»Ž Validator 继承,并且必须提供 validate() 方法以根据需要测试各种约束。

       è¿™æ˜¯ä¸‰ä¸ªå®žç”¨çš„数据验证工具:

       OneOf 验证值是一组受约束的选项之一。

class OneOf(Validator):def __init__(self, *options):self.options = set(options)def validate(self, value):if value not in self.options:raise ValueError(f'Expected { value!r} to be one of { self.options!r}')

       Number 验证值是否为 int 或 float。根据可选参数,它还可以验证值在给定的最小值或最大值之间。

class Number(Validator):def __init__(self, minvalue=None, maxvalue=None):self.minvalue = minvalueself.maxvalue = maxvaluedef validate(self, value):if not isinstance(value, (int, float)):raise TypeError(f'Expected { value!r} to be an int or float')if self.minvalue is not None and value < self.minvalue:raise ValueError(f'Expected { value!r} to be at least { self.minvalue!r}')if self.maxvalue is not None and value > self.maxvalue:raise ValueError(f'Expected { value!r} to be no more than { self.maxvalue!r}')

       String 验证值是否为 str。根据可选参数,它可以验证给定的最小或最大长度。它还可以验证用户定义的 predicate。

class String(Validator):def __init__(self, minsize=None, maxsize=None, predicate=None):self.minsize = minsizeself.maxsize = maxsizeself.predicate = predicatedef validate(self, value):if not isinstance(value, str):raise TypeError(f'Expected { value!r} to be an str')if self.minsize is not None and len(value) < self.minsize:raise ValueError(f'Expected { value!r} to be no smaller than { self.minsize!r}')if self.maxsize is not None and len(value) > self.maxsize:raise ValueError(f'Expected { value!r} to be no bigger than { self.maxsize!r}')if self.predicate is not None and not self.predicate(value):raise ValueError(f'Expected { self.predicate} to be true for { value!r}')

       å®žé™…应用时这样写:

@timeit()def test_timeit():time.sleep(1)test_timeit()#test_timeit cost 1. seconds0

       æè¿°å™¨é˜»æ­¢æ— æ•ˆå®žä¾‹çš„创建:

@timeit()def test_timeit():time.sleep(1)test_timeit()#test_timeit cost 1. seconds1

       æœ€åŽçš„话 关于 Python 的元编程,总结如下:

       å¦‚果希望某些函数拥有相同的功能,希望不改变原有的调用方式、不写重复代码、易维护,可以使用装饰器来实现。

       å¦‚果希望某一些类拥有某些相同的特性,或者在类定义实现对其的控制,我们可以自定义一个元类,然后让它类的元类指向该类。

       å¦‚果希望实例的属性拥有某些共同的特点,就可以自定义一个描述符类。

       ä»¥ä¸Šå°±æ˜¯æœ¬æ¬¡åˆ†äº«çš„所有内容,如果你觉得文章还不错,欢迎关注公众号:Python编程学习圈,每日干货分享,内容覆盖Python电子书、教程、数据库编程、Django,爬虫,云计算等等。或是前往编程学习网,了解更多编程技术知识。

原文:/post/

程序中的类是什么?

       类就是划分功能的模块,根据需求把某些逻辑抽象成一个整体,想象他的行为和属性

1.1Python 的类机制通过最小的新语法和语义在语言中实现了类。它是 C++ 或者 Modula-3 语言中类机制的混合。就像模块一样,Python 的类并没有在用户和定义之间设立绝对的屏障,而是快活林源码依赖于用户不去“强行闯入定义”的优雅。另一方面,类的大多数重要特性都被完整地保留下来:类继承机制允许多重继承,派生类可以覆盖(override)基类中的任何方法或类,可以使用相同的方法名称调用基类的方法。对象可以包含任意数量的私有数据。

1.2用 C++ 术语来讲,所有的类成员(包括数据成员)都是公有( public )的(其它情况见下文 私有变量),所有的成员函数都是虚( virtual )的。用 Modula-3 的shiro 记住密码源码术语来讲,在成员方法中没有简便的方式引用对象的成员:方法函数在定义时需要以引用的对象作为第一个参数,调用时则会隐式引用对象。像在 Smalltalk 中一个,类也是对象。这就提供了导入和重命名语义。不像 C++ 和 Modula-3 中那样,大多数带有特殊语法的内置操作符(算法运算符、下标等)都可以针对类的需要重新定义。

1.3在讨论类时,开单器app 源码没有足够的得到共识的术语,我会偶尔从 Smalltalk 和 C++ 借用一些。我比较喜欢用 Modula-3 的用语,因为比起 C++,Python 的面向对象语法更像它,但是我想很少有读者听过这个。

1.4Python 的类机制通过最小的新语法和语义在语言中实现了类。它是 C++ 或者 Modula-3 语言中类机制的混合。就像模块一样,Python 的类并没有在用户和定义之间设立绝对的屏障,而是依赖于用户不去“强行闯入定义”的优雅。另一方面,类的大多数重要特性都被完整地保留下来:类继承机制允许多重继承,派生类可以覆盖(override)基类中的任何方法或类,可以使用相同的方法名称调用基类的方法。对象可以包含任意数量的私有数据。

1.5用 C++ 术语来讲,所有的类成员(包括数据成员)都是公有( public )的(其它情况见下文 私有变量),所有的成员函数都是虚( virtual )的。用 Modula-3 的术语来讲,在成员方法中没有简便的方式引用对象的成员:方法函数在定义时需要以引用的对象作为第一个参数,调用时则会隐式引用对象。像在 Smalltalk 中一个,类也是对象。这就提供了导入和重命名语义。不像 C++ 和 Modula-3 中那样,大多数带有特殊语法的内置操作符(算法运算符、下标等)都可以针对类的需要重新定义。

1.6在讨论类时,没有足够的得到共识的术语,我会偶尔从 Smalltalk 和 C++ 借用一些。我比较喜欢用 Modula-3 的用语,因为比起 C++,Python 的面向对象语法更像它,但是我想很少有读者听过这个。

copyright © 2016 powered by 皮皮网   sitemap