1.List LinkedList HashSet HashMap底层原理剖析
2.C语言 数据结构 约瑟夫环问题(代码相关的源码)
3.LinkedList(详细讲解)
4.RUST标准库双向链表LinkedList<T>源代码分析
5.arraylist和linkedlist重大区别?
List LinkedList HashSet HashMap底层原理剖析
ArrayList底层数据结构采用数组。数组在Java中连续存储,源码因此查询速度快,源码时间复杂度为O(1),源码插入数据时可能会慢,源码特别是源码冒险王ol源码需要移动位置时,时间复杂度为O(N),源码但末尾插入时时间复杂度为O(1)。源码数组需要固定长度,源码ArrayList默认长度为,源码最大长度为Integer.MAX_VALUE。源码在添加元素时,源码如果数组长度不足,源码则会进行扩容。源码JDK采用复制扩容法,源码通过增加数组容量来提升性能。若数组较大且知道所需存储数据量,可设置数组长度,大盘_板块_个股源码或者指定最小长度。例如,设置最小长度时,扩容长度变为原有容量的1.5倍,从增加到。
LinkedList底层采用双向列表结构。链表存储为物理独立存储,因此插入操作的时间复杂度为O(1),且无需扩容,也不涉及位置挪移。然而,查询操作的时间复杂度为O(N)。LinkedList的add和remove方法中,add默认添加到列表末尾,无需移动元素,相对更高效。而remove方法默认移除第一个元素,应用上传源码移除指定元素时则需要遍历查找,但与ArrayList相比,无需执行位置挪移。
HashSet底层基于HashMap。HashMap在Java 1.7版本之前采用数组和链表结构,自1.8版本起,则采用数组、链表与红黑树的组合结构。在Java 1.7之前,链表使用头插法,但在高并发环境下可能会导致链表死循环。从Java 1.8开始,链表采用尾插法。在创建HashSet时,通常会设置一个默认的负载因子(默认值为0.),当数组的使用率达到总长度的%时,会进行数组扩容。C语言 链表源码HashMap的put方法和get方法的源码流程及详细逻辑可能较为复杂,涉及哈希算法、负载因子、扩容机制等核心概念。
C语言 数据结构 约瑟夫环问题(代码相关的)
#include<stdio.h>
#include <crtdbg.h>
#include <malloc.h>
typedef struct Node
{
int data;
Node *next;
}NODE,*LinkedList;
LinkedList CreatList(int n)
{
NODE *head,*p;
head = (NODE *)malloc(sizeof(NODE));
p=(NODE *)malloc(sizeof(NODE));
p=head;
int i;
for (i=1;i<n;i++)
{
NODE *L;
L=(NODE *)malloc(sizeof(NODE));
L->data = i;
p->next =L;
p=L;
}
NODE *L;
L=(NODE *)malloc(sizeof(NODE));
L->data = n;
p->next =L;
p=L;
p->next = head->next;
return head;
}
int _tmain(int argc, _TCHAR* argv[])
{
int n,m,x,j;
x=1;
NODE *L,*Q;
printf("有多少人参加约瑟夫,报数多少,中间用空格隔开:");
scanf("%d%d",&n,&j);
m=n;//ren shu
L=CreatList(n);
Q=L->next;
while (m>0)
{
if (x%j==0)
{
NODE *p;
p=Q->next;
Q->next = p->next;
printf("%d->",Q->data);
free(p);
x++;
m--;
}
else
{
Q = Q->next;
x++;
}
}
return 0;
vs下测试通过。程序如上。
LinkedList(详细讲解)
LinkedList是Java中实现List接口和Deque接口的双向链表,其独特结构使其支持高效的插入和删除操作,同时具备队列特性。非线程安全的LinkedList可通过Collections.synchronizedList方法进行同步处理。
内部结构由Node节点构成,包含前驱节点、节点值和后继节点。类提供了多种操作方法,如空构造、基于集合创建链表、添加元素(add、编译systemui系统源码addFirst、addLast)、根据索引获取或删除数据(get、remove、indexOf等)。在处理特定情况时,如获取头节点,getFirst()和element()会抛出异常,而getLast()和peekLast()则返回null。删除节点时,removeLast()和pollLast()行为不同,前者在链表为空时抛出异常,后者则返回null。
总结,LinkedList提供了丰富的操作手段,适用于需要频繁插入和删除元素的场景,但需要注意其线程安全问题。通过学习其源码,我们可以深入了解其实现机制和使用方法。
RUST标准库双向链表LinkedList<T>源代码分析
本文解析RUST标准库中的双向链表LinkedList。深入理解此数据结构的关键,有助于掌握更多相关知识。本书对LinkedList的分析主要集中在RUST与其它语言的差异上,旨在帮助读者全面理解。
LinkedList类型结构定义的核心在于Node方法,其定义了链表中节点的实现逻辑。
创建并操作LinkedList涉及基本增减方法。如在头部添加或删除成员,以及在尾部进行相应的操作。这些方法展现了LinkedList在RUST中的高效管理。
通过Iterator实现对List的访问,其相关结构代码展示了LinkedList的便利性。使用into_iter()和iter_mut()等方法,可对列表进行迭代操作。
除此之外,LinkedList的其他实现细节虽略去,但上述关键点已覆盖其核心功能。通过本文的解析,读者能更好地掌握RUST标准库中的LinkedList。
arraylist和linkedlist重大区别?
1. ArrayList是实现了基于动态数组的数据结构,而LinkedList是基于链表的数据结构;2. 对于随机访问get和set,ArrayList要优于LinkedList,因为LinkedList要移动指针;
3. 对于添加和删除操作add和remove,一般大家都会说LinkedList要比ArrayList快,因为ArrayList要移动数据。但是实际情况并非这样,对于添加或删除,LinkedList和ArrayList并不能明确说明谁快谁慢
研究源码可以看出,ArrayList想要get(int index)元素时,直接返回index位置上的元素,而LinkedList需要通过for循环进行查找,虽然LinkedList已经在查找方法上做了优化,比如index < size / 2,则从左边开始查找,反之从右边开始查找,但是还是比ArrayList要慢。这点是毋庸置疑的。
ArrayList想要在指定位置插入或删除元素时,主要耗时的是System.arraycopy动作,会移动index后面所有的元素;LinkedList主耗时的是要先通过for循环找到index,然后直接插入或删除。这就导致了两者并非一定谁快谁慢
测试:
import java.util.ArrayList;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
/
** @description 测试ArrayList和LinkedList插入的效率
* @eson_
*/
public class ArrayOrLinked {
static List<Integer> array=new ArrayList<Integer>();
static List<Integer> linked=new LinkedList<Integer>();
public static void main(String[] args) {
//首先分别给两者插入条数据
for(int i=0;i<;i++){
array.add(i);
linked.add(i);
}
//获得两者随机访问的时间
System.out.println("array time:"+getTime(array));
System.out.println("linked time:"+getTime(linked));
//获得两者插入数据的时间
System.out.println("array insert time:"+insertTime(array));
System.out.println("linked insert time:"+insertTime(linked));
}
public static long getTime(List<Integer> list){
long time=System.currentTimeMillis();
for(int i = 0; i < ; i++){
int index = Collections.binarySearch(list, list.get(i));
if(index != i){
System.out.println("ERROR!");
}
}
return System.currentTimeMillis()-time;
}
//插入数据
public static long insertTime(List<Integer> list){
/
** 插入的数据量和插入的位置是决定两者性能的主要方面,
* 我们可以通过修改这两个数据,来测试两者的性能
*/
long num = ; //表示要插入的数据量
int index = ; //表示从哪个位置插入
long time=System.currentTimeMillis();
for(int i = 1; i < num; i++){
list.add(index, i);
}
return System.currentTimeMillis()-time;
}
}
主要有两个因素决定他们的效率,插入的数据量和插入的位置。我们可以在程序里改变这两个因素来测试它们的效率。
当数据量较小时,测试程序中,大约小于的时候,两者效率差不多,没有显著区别;当数据量较大时,大约在容量的1/处开始,LinkedList的效率就开始没有ArrayList效率高了,特别到一半以及后半的位置插入时,LinkedList效率明显要低于ArrayList,而且数据量越大,越明显。比如我测试了一种情况,在index=的位置(容量的1/)插入条数据和在index=的位置以及在index=的位置插入条数据的运行时间如下:
在index=出插入结果:
array time:4
linked time:
array insert time:
linked insert time:
在index=处插入结果:
array time:4
linked time:
array insert time:
linked insert time:
在index=处插入结果:
array time:4
linked time:
array insert time:7
linked insert time:
从运行结果看,LinkedList的效率是越来越差。
所以当插入的数据量很小时,两者区别不太大,当插入的数据量大时,大约在容量的1/之前,LinkedList会优于ArrayList,在其后就劣与ArrayList,且越靠近后面越差。所以个人觉得,一般首选用ArrayList,由于LinkedList可以实现栈、队列以及双端队列等数据结构,所以当特定需要时候,使用LinkedList,当然咯,数据量小的时候,两者差不多,视具体情况去选择使用;当数据量大的时候,如果只需要在靠前的部分插入或删除数据,那也可以选用LinkedList,反之选择ArrayList反而效率更高。