欢迎来到皮皮网网首页

【网上下载的源码环境选择】【服装平台源码】【cdp游戏源码】视频解析源码编写_视频解析源码编写软件

来源:测试程序源码 时间:2024-11-25 03:44:11

1.音视频流媒体开发系列(45)GLSurfaceView源码解析&EGL环境
2.Python爬虫腾讯视频m3u8格式分析爬取(附源码,视频视频高清无水印)
3.flv.js源码知识点(下) FLV格式解析
4.使用you-get和yt-dlp开源组件下载及播放视频
5.详解视频中动作识别模型与代码实践
6.WebRTC PeerConnection源码分析1-main window/附:WebRTC源码级深度解析,解析解析进阶大厂高级音视频开发者课程

视频解析源码编写_视频解析源码编写软件

音视频流媒体开发系列(45)GLSurfaceView源码解析&EGL环境

       查看源码的源码源码原则:以常用的API为入口,依据地图、编写编写带着问题、软件沿着主线来寻找答案

       从事「音视频领域」开发工作有前途吗?

       GLSurfaceView在使用时,视频视频网上下载的源码环境选择我们调用的解析解析两个主要方法是setEGLContextClientVersion和setRenderer。具体操作在渲染回调中执行,源码源码包括onSurfaceCreated、编写编写onSurfaceChanged和onDrawFrame。软件

       我们的视频视频焦点是EGL和GLThread。

       1.1. setRenderer的解析解析实现:检查GLThread的状态,确保只有一个GLThread存在。源码源码

       1.2. GLThread实现:这是编写编写一个Thread的子类,关键逻辑在guardedRun方法中。软件

       1.3. guardedRun(渲染核心逻辑):创建EGLSurface,获取GL对象,并在EGLContext和EGLSurface生成并绑定后执行渲染。渲染数据通过eglSwapBuffers显示。

       1.4. EglHelper:提供创建EGLSurface、获取GL对象和交换Framebuffer的方法。

       音视频免费学习资源:FFmpeg/WebRTC/RTMP/NDK/Android音视频流媒体高级开发

       整理了一些面试题、学习资料、教学视频和学习路线图共享在群文件,资料涵盖C/C++、Linux、FFmpeg、WebRTC、RTMP等,免费分享,有需要的可以加入群自取。

       TextureView +EGL+ GLThread绘制图形

       将GLSurfaceView内容简化,剔除SurfaceView继承,保留GL环境,使用GLEnvironment进行渲染。借鉴了[GLSurfaceView的服装平台源码简单分析及巧妙借用]的思路,避免了从头开始实现GL环境的复杂过程。

       通过实践,了解了GLSurfaceView内部机制、EGLThread的实现和EGL上下文的意义。在TextureView基础上创建EGL上下文和GLThread以实现OpenGL的绘制。

       感谢阅读。

Python爬虫腾讯视频m3u8格式分析爬取(附源码,高清无水印)

       为了解析并爬取腾讯视频的m3u8格式内容,我们首先需要使用Python开发环境,并通过开发者工具定位到m3u8文件的地址。在开发者工具中搜索m3u8,通常会发现包含多个ts文件的链接,这些ts文件是视频的片段。

       复制这些ts文件的URL,然后在新的浏览器页面打开URL链接,下载ts文件。一旦下载完成,打开文件,会发现它实际上是一个十几秒的视频片段。这意味着,m3u8格式的文件结构为我们提供了直接获取视频片段的途径。

       要成功爬取,我们需要找到m3u8文件的URL来源。一旦确定了URL,由于通常涉及POST请求,我们需要获取并解析对应的表单参数。接下来,我们将开始编写Python代码。

       首先,导入必要的Python库,如requests用于数据请求。接着,编写代码逻辑以请求目标URL并提取所需数据。遍历获取到的数据,将每个ts文件的cdp游戏源码URL保存或下载。最后,执行完整的爬虫代码,完成视频片段的爬取。

flv.js源码知识点(下) FLV格式解析

       flv.js系列三:FLV格式解析

       此篇文章为flv.js源码知识点系列的终篇,旨在深入解析FLV文件的格式。在理解FLV文件数据结构及如何在JavaScript中读取特定二进制数据的基础上,文章将引导读者逐步构建对FLV文件解析的全面认知。

       FLV格式解析主要涉及两个关键部分:FLVHeader和FLVBody。FLVHeader为文件的前导部分,固定长度为9字节,其结构定义了文件的后续部分。FLVBody包含多个Tag,每个Tag由TagHeader和TagData组成,Tag的结构为字节,体现了FLV文件的层次化和可扩展性。

       在进行FLV文件解析时,二进制数据读取API显得尤为重要,特别是DateView类的使用。DateView允许以位级别访问ArrayBuffer中的数据,提供了读取、写入以及转换数据类型的能力,极大地简化了二进制数据的处理流程。

       具体而言,DateView提供了构造函数new DataView,用于指定数组缓冲区、偏移量和长度。获取数据时,可以通过getUint8、getUint等方法,灵活地读取不同长度的整数。此外,了解字节序(大字节序与小字节序)的概念及其对数据读取的影响,对于正确解析FLV文件至关重要。

       位操作是二进制数据处理的另一大利器,包括按位非、汕尾pc源码按位与、按位或、按位异或以及位移操作等。这些操作允许在位级别上进行复杂的数据提取和重组,对于处理如FLV标签中的时间戳拼接等特定场景尤为关键。

       最后,文章强调了结合FLV格式文档和二进制数据读取技术进行解析的重要性。通过解析每个字段,开发者可以有效地理解和处理FLV文件中的音视频数据,为后续的音视频解码、传输和播放提供坚实基础。

       通过本系列文章的学习,读者不仅掌握了flv.js源码的解析原理,还深入理解了FLV文件格式的内在结构与处理方法,为音视频开发工作打下坚实的技术基础。

使用you-get和yt-dlp开源组件下载及播放视频

       本文介绍如何使用开源播放器MPV实现视频播放和作笔记的闭环,并推荐使用you-get作为视频解析引擎,以解决youtube-dl和yt-dlp的解析问题。以下是详细的集成与配置步骤:

       一、国外视频网站解析方案

       1. MPV内置youtube-dl:MPV自带youtube-dl,用于解析在线视频,使用方法为输入相关命令。

       2. yt-dlp使用:需先安装yt-dlp,配置mpv.conf文件,将youtube-dl替换为yt-dlp。

       二、国内视频网站解析方案

       推荐使用you-get作为视频解析引擎。步骤包括:安装you-get,使用其作为视频解析引擎,以避免更新滞后问题。

       三、优酷视频播放

       对于优酷视频,由于版本问题,需要调整you-get的youku.py源码或直接修改ccode参数为,或自编译you-get。composer安装源码

       四、登录时使用Cookies

       通过火狐浏览器cookies.sqllite文件设置cookies,实现登录后正常访问视频。

       五、笔记参考

       提供配置示例,以及MPV详细配置文件链接,供进一步参考。

       总结:通过以上步骤,可以利用MPV播放器结合you-get,实现对国内外主流视频网站的视频播放和解析,同时支持登录访问,满足作笔记需求。请注意,部分步骤可能需要根据实际情况调整,以确保兼容性和最新功能。

详解视频中动作识别模型与代码实践

       摘要:本文详细解析视频动作识别的经典模型,并通过代码实践进行演示。视频动作识别涉及分析一段视频内容,判断其中的人物动作。与图像识别相比,视频分析需要考虑时间顺序和动作之间的关联性。由于视频分析的计算资源需求高,数据量庞大,并且需要处理时序因素,模型参数量也相应增加。然而,基于已有的图像模型,如ImageNet,可以有效应用于视频模型训练,提高训练效果。本文将介绍视频动作识别领域的经典模型,包括旧模型和新模型,并通过代码实现进行实践。

       视频动作识别旨在解析视频内容,识别出人物所做的动作。这一领域相较于图像识别,不仅要分析静态,还要考虑序列间的时空关系。例如,仅凭一张无法确定某人扶门的意图是开门还是关门。

       视频分析领域发展相对较晚,与图像分析领域相比,面临着更大的挑战。主要难点在于需要强大的计算资源来处理视频内容,视频转换为进行分析导致数据量庞大。此外,视频分析模型需考虑时间顺序,通过时间关系联系图像,进行判断,这增加了模型的复杂性和参数量。

       得益于PASCAL VOC、ImageNet、MS COCO等数据集的公开,图像领域诞生了许多经典模型。视频动作识别领域同样存在经典模型,本案例将详细介绍这些模型,并通过代码实践进行演示。首先,本案例将准备所需源代码和数据,通过ModelArts SDK将资源下载并解压。

       UCF-数据集将被选作为演示数据集,演示视频动作识别模型。接下来,我们将介绍视频动作识别的经典模型,从旧模型到新模型,逐步解析模型结构和工作原理。旧模型包括卷积网络+LSTM、3D卷积网络以及Two-Stream网络,新模型则引入了更有效的Two-Stream Inflated 3D ConvNets(I3D)模型,利用光流数据增强动作识别能力。

       为了捕获图像间的时空关系,I3D模型结合了多种结构改进,如光流计算和时间序列分析,有效提升模型识别精度。通过代码实现,我们将分别实践C3D模型(3D卷积网络)和I3D模型(Two-Stream Inflated 3D ConvNets),并展示训练过程、模型结构和具体实现细节。

       本案例将重点介绍C3D模型和I3D模型的结构与训练过程。C3D模型采用3D卷积网络处理视频,结合LSTM捕捉时间序列信息。I3D模型则在C3D基础上引入光流计算,增强模型对视频动作的识别能力。通过代码实践,读者将深入了解视频动作识别的经典模型和实际应用。

       在代码实现部分,我们将详细展示如何准备数据、构建模型结构、训练和测试模型的过程。例如,对于C3D模型,我们将讲解数据预处理、构建模型、训练模型和评估模型的方法。对于I3D模型,我们将介绍模型结构、参数定义、数据处理和模型预测的实现方式。

       通过本案例的代码实践,读者将能够亲自动手实现视频动作识别模型,理解模型原理,掌握模型训练与测试的关键步骤。这不仅有助于深入理解视频动作识别领域,还能为实际应用打下坚实的基础。

WebRTC PeerConnection源码分析1-main window/附:WebRTC源码级深度解析,进阶大厂高级音视频开发者课程

       当前音视频行业蓬勃发展,WebRTC作为优秀的音视频开源库,广泛应用于各种音视频业务中。对于高级音视频开发者而言,掌握业务适用性改造能力至关重要。深入学习与分析WebRTC,从中汲取有益经验,对开发者而言具有极高的价值。

       本文基于WebRTC release-源码及云信音视频团队的经验,主要探讨以下问题:ADM(Audio Device Manager)架构解析、启动流程分析、数据流向解析。本文聚焦核心流程,旨在帮助开发者在有需求时快速定位相关模块。

       ADM架构解析

       在WebRTC中,ADM(Audio Device Manager)的行为由AudioDeviceModule定义,实现则由AudioDeviceModuleImpl提供。通过架构图可以看出,AudioDeviceModule全面规定了ADM的所有行为。AudioDeviceModule的主要职责在于管理音频设备的采集与播放。

       AudioDeviceModule由AudioDeviceModuleImpl实现,包含音频设备实例audio_device_和音频缓冲区audio_device_buffer_。audio_device_负责与具体平台的音频设备交互,audio_device_buffer_用于存储音频缓冲区数据,是与AudioDeviceModuleImpl中的audio_device_buffer_同一对象。AudioDeviceModuleImpl通过AttachAudioBuffer()方法将audio_device_buffer_传递给平台实现。

       音频缓冲区AudioDeviceBuffer包含play_buffer_与rec_buffer_,分别用于播放与采集音频数据。AudioTransport接口定义了向下获取播放与传递采集数据的核心方法。

       关于ADM扩展的思考

       在WebRTC实现中,主要关注硬件设备的实现,对于虚拟设备的支持不足。但在实际项目中,往往需要外部音频输入/输出支持。这可以通过在AudioDeviceModuleImpl中引入虚拟设备,实现与真实设备的切换或协同工作,简化了设备管理。

       ADM设备启动时机与流程

       ADM设备启动时机并不严格,通常在创建后即可启动。WebRTC源码中会在SDP协商后检查是否需要启动相关设备,根据需求启动采集或播放设备。启动流程涉及InitXXX与StartXXX方法,最终调用平台实现。

       关于设备停止

       了解启动过程后,设备停止逻辑与启动逻辑大体相似,主要涉及相关方法的调用。

       ADM音频数据流向

       音频数据发送核心流程涉及硬件采集、APM处理、RTP封装、网络发送等步骤。数据接收与播放则包括网络接收、解包、解码、混音与播放,整个流程清晰且高效。

零基础读懂视频播放器控制原理: ffplay 播放器源代码分析

       视频播放器的工作原理基于对音视频帧序列的控制。不同播放器可能在音视频同步上采用更复杂的帧预测技术,以提升音频与视频的同步性。ffplay,作为FFmpeg自带的播放器,使用了FFmpeg解码库与用于视频渲染显示的SDL库。本文将详细分析ffplay源码,旨在用基础且系统的方法,解读音视频同步、播放/暂停、快进/后退等控制原理。

       相较于在移动端查看音视频代码,使用PC端通过VS进行查看和调试,能更高效迅速地分析播放器原理。由于ffplay在命令行界面的使用体验不够直观,本文将分析在CSDN上移植到VC的ffplay代码(ffplay for MFC)。

       文章将按照以下结构展开:

       一、解析MP4文件结构,理解视频文件的构成与参数。

       二、从最简单的播放器入手,分析FFmpeg解码与SDL显示流程。

       三、提出并解答五个关键问题,涉及音视频组合、同步、时间与帧数控制等。

       四、深入ffplay代码,从总体流程图入手,理解其代码结构。

       五、详细分析视频播放器的操作控制机制,包括关键结构体VideoState的作用,PTS和DTS的原理与应用,以及如何实现音视频同步。

       六、总结反思,强调基础概念、流程图与PC端调试的重要性。

       通过本文,我们将深入解析ffplay播放器的音视频播放与控制原理,旨在提供更直观、基础的解读方式,帮助读者理解和掌握视频播放器的核心技术。