欢迎来到【精准cci源码】【静态收益app源码】【江湖家装源码】看numpy源码_numpy源代码-皮皮网网站!!!

皮皮网

【精准cci源码】【静态收益app源码】【江湖家装源码】看numpy源码_numpy源代码-皮皮网 扫描左侧二维码访问本站手机端

【精准cci源码】【静态收益app源码】【江湖家装源码】看numpy源码_numpy源代码

2024-11-24 20:54:02 来源:{typename type="name"/} 分类:{typename type="name"/}

1.【硬核福利】量化交易神器talib中28个技术指标的源码y源Python实现(附全部源码)
2.pycharm+Ctrl加左键查看不了numpy包是怎么回事?
3.python的库,比如numpy是如何调用c语言实现的代码的?
4.Python数据分析实战-实现T检验(附源码和实现效果)
5.七爪源码:NumPy 简介:5 个非常有用的函数

看numpy源码_numpy源代码

【硬核福利】量化交易神器talib中28个技术指标的Python实现(附全部源码)

       本文将带您深入学习纯Python、Pandas、代码Numpy与Math实现TALIB中的源码y源个金融技术指标,不再受限于库调用,代码从底层理解指标原理,源码y源提升量化交易能力。代码精准cci源码

       所需核心库包括:Pandas、源码y源Numpy与Math。代码重要提示:若遇“ewma无法调用”错误,源码y源建议安装Pandas 0.版本,代码或调整调用方式。源码y源

       我们逐一解析常见指标:

       1. 移动平均(Moving Average)

       2. 指数移动平均(Exponential Moving Average)

       3. 动量(Momentum)

       4. 变化率(Rate of Change)

       5. 均幅指标(Average True Range)

       6. 布林线(Bollinger Bands)

       7. 转折、代码支撑、源码y源阻力点(Trend,代码 Support & Resistance)

       8. 随机振荡器(%K线)

       9. 随机振荡器(%D线)

       . 三重指数平滑平均线(Triple Exponential Moving Average)

       . 平均定向运动指数(Average Directional Movement Index)

       . MACD(Moving Average Convergence Divergence)

       . 梅斯线(High-Low Trend Reversal)

       . 涡旋指标(Vortex Indicator)

       . KST振荡器(KST Oscillator)

       . 相对强度指标(Relative Strength Index)

       . 真实强度指标(True Strength Index)

       . 吸筹/派发指标(Accumulation/Distribution)

       . 佳庆指标(ChaiKIN Oscillator)

       . 资金流量与比率指标(Money Flow & Ratio)

       . 能量潮指标(Chande Momentum Oscillator)

       . 强力指数指标(Force Index)

       . 简易波动指标(Ease of Movement)

       . 顺势指标(Directional Movement Index)

       . 估波指标(Estimation Oscillator)

       . 肯特纳通道(Keltner Channel)

       . 终极指标(Ultimate Oscillator)

       . 唐奇安通道指标(Donchian Channel)

       

参考资料:

乐学偶得系列笔记,开源项目ultrafinance。源码y源

       深入学习并应用这些指标,将大大提升您的量化交易与金融分析技能。

pycharm+Ctrl加左键查看不了numpy包是怎么回事?

       在 PyCharm 中无法查看 NumPy 包的源代码,可能是静态收益app源码因为 PyCharm 没有正确地安装或配置 NumPy。以下是一些可能的解决方法:

       确保已经正确安装 NumPy,并且在 PyCharm 中设置了正确的解释器。您可以在 PyCharm 的设置中检查解释器设置,确保已经添加了 NumPy 库。

       确认您的 PyCharm 版本支持 NumPy。您可以尝试升级 PyCharm 或使用其他支持 NumPy 的 IDE。

       确保您的 PyCharm 版本已经正确配置了 NumPy 的源代码路径。您可以尝试手动配置 NumPy 的源代码路径。

       如果上述方法都没有解决问题,您可以尝试重新安装 PyCharm 或 NumPy 包。

python的库,比如numpy是如何调用c语言实现的代码的?

       在深入探讨Python的内置容器实现的过程中,我们将重点讲解PyListObject、PyTupleObject、PyDictObject和PySetObject的C语言实现及其相关API。在这一系列教程中,我们已探讨过Python的内置对象和优化了datetimecpy.date对象。欲了解详情,敬请访问教程的江湖家装源码repo。

       ### PyListObject及其相关函数

       Python的list底层实现为一段连续分配的内存,通过指针获取数据,类似数组实现。查看源码(Python 3.9)可知,`ob_item`用于存放元素,而`allocated`表示已分配内存。`ob_size`则用于存储实际长度,且必须小于`allocated`,强调了内存空间的高效重复利用。

       在实现中,`ob_item`被解释为指针的指针,用户应将PyObject*视为整体,因为所有对Python对象的操作都是引用。在C语言环境下,Python对象数组即为指针的指针。

       重点API包括访问、修改、遍历和管理list的国外pubg雷达源码方法。

       ### PyTupleObject及其相关函数

       作为不可变序列容器,tuple底层实现与list极为相似,但其设计考虑了内存效率和不可变性。在Python 3.9的源码中,`ob_item`定义为数组,元素存储连续,体现数组特性。

       由于不可变性,tuple无需动态分配内存,故无`allocated`字段。`ob_size`同样用于存储长度信息。

       区别于list,tuple的API侧重于元素访问和不可变性维护。

       ### PyDictObject及其相关函数

       Python字典基于哈希表实现,负载因子设置为2/3,确保高效查找。在Python 3.9版本中,dict有两种类型:combined和split。对接派特源码combined类型将key和value存放在同一entry内,split类型则将key和value分开存储,分别通过不同的机制进行管理。

       为了节省内存,PyDictKeysObject在存储dk_indices时使用char数组,并通过DK_ENTRIES宏转换为PyDictKeyEntry,实现更紧凑的存储。

       常用API包括插入、查找、更新和删除等操作。

       ### PySetObject及其相关函数

       Python中的set基于哈希表实现,内部使用table存储元素。插入元素时,通过哈希值与mask进行与运算确定位置,若位置为空则直接插入,否则继续尝试插入以避免冲突。

       API涵盖元素添加、查找、删除和迭代等基本操作。

       ### 操作实践与小结

       在datetimecpy项目中,我们实现了timetuple函数,用于返回tuple对象,包含year、month、day、hour、minute、second、wday、yday和dst等元素。此函数利用了PyTupleObject相关API,实现了Python日期时间对象与tuple之间的转换。

       本章旨在深入理解Python内置容器的C语言实现及其API,为后续构建datetime中的新对象——time对象打下基础。下一章将探讨模块和方法相关的C语言API。

Python数据分析实战-实现T检验(附源码和实现效果)

       T检验是一种用于比较两个样本均值是否存在显著差异的统计方法。广泛应用于各种场景,例如判断两组数据是否具有显著差异。使用T检验前,需确保数据符合正态分布,并且样本方差具有相似性。T检验有多种变体,包括独立样本T检验、配对样本T检验和单样本T检验,针对不同实验设计和数据类型选择适当方法至关重要。

       实现T检验的Python代码如下:

       python

       import numpy as np

       import scipy.stats as stats

       # 示例数据

       data1 = np.array([1, 2, 3, 4, 5])

       data2 = np.array([2, 3, 4, 5, 6])

       # 独立样本T检验

       t_statistic, p_value = stats.ttest_ind(data1, data2)

       print(f"T统计量:{ t_statistic}")

       print(f"显著性水平:{ p_value}")

       # 根据p值判断差异显著性

       if p_value < 0.:

        print("两个样本的均值存在显著差异")

       else:

        print("两个样本的均值无显著差异")

       运行上述代码,将输出T统计量和显著性水平。根据p值判断,若p值小于0.,则可认为两个样本的均值存在显著差异;否则,认为两者均值无显著差异。

       实现效果

       根据上述代码,执行T检验后,得到的输出信息如下:

       python

       T统计量:-0.

       显著性水平:0.

       根据输出结果,T统计量为-0.,显著性水平为0.。由于p值大于0.,我们无法得出两个样本均值存在显著差异的结论。因此,可以判断在置信水平为0.时,两个样本的均值无显著差异。

七爪源码:NumPy 简介:5 个非常有用的函数

       与数字作斗争?让 NumPy 解决问题。

       介绍

       NumPy 是为科学计算设计的 Python 包。它利用与数学分支相关的各种公式,如线性代数和统计学。数据科学和机器学习领域的专业人员可能对 NumPy 的了解不够深入,但 NumPy 的优势在于其数组操作速度比 Python 列表快。下面通过示例对比了 Python 列表和 NumPy 数组的执行时间。

       “我们为什么要间接使用 NumPy?”

       除非您专注于应用数学或统计学,否则您通常需要处理表格形式的数据,并使用 Pandas 库进行数据预处理。 Pandas 是一个在 Python 中提供高性能数据操作的开源库。它建立在 NumPy 的基础上,因此使用 Pandas 需要 NumPy。

       有用的 NumPy 函数

       1. np.argmax() 函数

       返回沿轴的最大值的索引。使用 np.argmax() 时,可以按 SHIFT+TAB 查看文档字符串以获取更多细节。

       例子:创建一个二维数组来查找数组的 argmax()。输出结果将显示最大值的索引。

       输出结果如下:

       将数组 a 作为参数传递给 np.argmax() 后,将得到以下输出。

       2. np.tensordot() 函数

       用于计算沿指定轴的张量点积。打开文档字符串查看该函数的示例。给定两个张量 a 和 b,以及一个包含两个类似数组的对象,`(a_axes, b_axes)`,函数将对 a 和 b 的元素进行求和,这些元素位于指定轴 `a_axes` 和 `b_axes` 上。第三个参数可以是一个非负整数,表示将最后的“N”维度 `a` 和 `b` 相加。

       3. np.quantile() 函数

       计算沿指定轴的数据的第 q 个分位数。该函数提供了一种在数组中查找特定位置的方法。

       4. np.std() 函数

       计算沿指定轴的标准偏差,用于度量数组元素分布的分散程度。默认情况下,函数会将数组扁平化,但也可以指定轴进行计算。

       例子:通过示例演示 np.std() 的使用方法。

       5. np.median() 函数

       计算沿指定轴的中位数。该函数返回数组元素的中位数,提供了一种找到数据集中点的方法。