1.改进CNN&FCN的现源晶圆缺陷分割系统
2.Ubuntu系统-FFmpeg安装及环境配置
3.FCOS:论文与源码解读
4.fcnt1.h:No such file or directory是什么意思?
5.深度学习语义分割篇——FCN原理详解篇
改进CNN&FCN的晶圆缺陷分割系统
随着半导体行业的快速发展,半导体晶圆的现源生产需求与日俱增,然而在生产过程中不可避免地会出现各种缺陷,现源这直接影响了半导体芯片产品的现源质量。因此,现源基于机器视觉的现源机器数源码计算晶圆表面检测方法成为研究热点。本文针对基于机器视觉的现源晶圆表面缺陷检测算法进行深入研究。
在实验中,现源我们采用三种方式对样本晶圆进行成像。现源第一种方式使用工业显微相机,现源配备白色环光,现源成像分辨率高达×,现源位深度为,现源视野约为5.5mm ×3.1mm。现源第二种方式使用相机 MER--GM,现源配有蓝色环光和2倍远心镜头,物距mm,成像分辨率×,位深度,视野宽4.4mm,精度为2jum。第三种方式采用相机 Manta G-B,白色环光LTS-RN-W,镜头TY-A,Androidui控件源码详解物距mm,成像分辨率×,位深度8,视野宽3mm,精度1 jum。
传统的基于CNN的分割方法在处理晶圆缺陷时存在存储开销大、效率低下、像素块大小限制感受区域等问题。而全卷积网络(FCN)能够从抽象特征中恢复每个像素所属的类别,但在细节提取和空间一致性方面仍有不足。
本文提出改进DUC(dense upsampling convolution)和HDC(hybrid dilated convolution),通过学习一系列上采样滤波器一次性恢复label map的全部分辨率,解决双线性插值丢失信息的问题,实现端到端的分割。
系统整合包括源码、环境部署视频教程、数据集和自定义UI界面等内容。
参考文献包括关于机器视觉缺陷检测的研究综述、产品缺陷检测方法、基于深度学习的产品缺陷检测、基于改进的加权中值滤波与K-means聚类的织物缺陷检测、基于深度学习的子弹缺陷检测方法、机器视觉表面缺陷检测综述、HTML手势密码源码基于图像处理的晶圆表面缺陷检测、非接触超声定位检测研究、基于深度学习的人脸识别方法研究等。
Ubuntu系统-FFmpeg安装及环境配置
FCN-4是一个应用于音频自动标注的全卷积神经网络,使用该网络进行mp3音频自动标注任务需要Librosa依赖库和ffmpeg工具。Librosa库的安装问题中,若安装结果中出现提示内容,说明librosa依赖库安装成功。在调用librosa包过程中,可能会遇到缺失其他相关依赖的问题,如缺少_bz2模块和_lzma模块,这需要将python3.6路径下的_bz2库拷贝到python3.7对应目录下,同时保证python3.7的目录下存在bz库文件,或从网上下载或从其他存在该文件的环境中复制到目标环境。对于找不到sndfile库的问题,使用命令行执行安装指令。在安装FFmpeg工具时,首先需要下载安装wget工具,然后下载并解压ffmpeg的源码安装包。在下载过程中,如果遇到无法通过认证检查的情况,可以通过在命令行中加入取消认证检查的选项来解决。下载完成后,three3源码使用解压命令将安装包解压至指定目录。接下来,创建ffmpeg文件夹作为安装路径,并进入源码包目录,执行config程序完成安装配置。若执行config程序时报错“nasm/yasm not found or too old. Use …”,需要先安装yasm,然后再重新执行配置程序。完成配置后,执行编译&安装指令,安装完成后,ffmpeg应存在于指定的安装路径下。配置环境变量时,将ffmpeg的绝对路径添加到PATH环境变量中。若在检测ffmpeg安装情况时出现找不到共享库文件的错误,需要在/etc/ld.so.conf.d/路径下创建文件“ffmpeg.conf”,并写入/usr/local/ffmpeg/lib路径。最后,通过命令行输入“which ffmpeg”或“ffmpeg -h”来测试是否配置成功。若以上步骤完成仍报错“audioread.exceptions.NoBackendError”,可以考虑修改库文件中的后端调用指令,将COMMAND = (‘ffmpeg’, ‘avconv’) 改为 COMMAND = (’/usr/local/ffmpeg/bin/ffmpeg’, ‘avconv’)。不同环境的tv原生源码配置可能会有所不同,因此可能遇到的问题也会有所差异,遇到未提及的问题时,应根据报错信息在搜索引擎中查找解决方案。
FCOS:论文与源码解读
FCOS:全称为全卷积单阶段目标检测,它在锚框自由领域中占有重要地位,与RetinaNet在锚框基础领域中地位相似。它沿用ResNet+FPN架构,通过实验证明,在相同backbone和neck层下,锚框自由方法可以取得比锚框基础方法更好的效果。 FCOS借鉴了语义分割的思想,成功地去除了锚框先验,实现了逐点的目标检测,是全卷积网在目标检测领域的延伸。代码比锚框基础类简单,非常适合入门。1. 动机
锚框基础类目标检测方法存在多处缺点,FCOS通过去除锚框,提出了简单、温柔且有力的目标检测模型。2. 创新点
FCOS借鉴了语义分割的思想,实现了去除锚框、逐点的目标检测。以年提出的全卷积网(FCN)为例,FCOS借鉴了FCN的思想,将其应用于目标检测,主要步骤包括生成先验、分配正负样本和设计bbox assigner。3. 模型整体结构与流程
训练时,包括生成先验和正负样本分配。FCOS的先验是将特征图上的每一点映射回原始图像,形成逐点对应关系。分配正负样本时,正样本表示预测目标,负样本表示背景。3.1 训练时
在训练阶段,先通过prior generate生成先验,然后进行bbox assign。在分配过程中,FCOS利用了FPN层解决ambigous点的问题,通过多尺度特征融合和逐层分配目标来解决。3.1.1 prior generate
FCOS通过映射特征图上的每一点回原始图像,形成点对点对应关系,生成先验。通过公式计算映射关系,其中s表示步长。3.1.2 bbox assigne
分配正负样本时,FCOS借鉴了anchor base方法的正负样本分配机制,通过设计bbox assigner解决ambigous点问题。分配流程包括计算输出值、对输出进行exp操作和引入可学习参数scale,以及使用FPN层分而治之,进一步解决ambigous问题。3.1.3 centerness
FCOS额外预测了centerness分支,以过滤远离目标中心的点,提高检测质量。centerness值范围为0~1,越靠近中心,值越大。测试时,最终score=cls_score*centerness。3.1.4 loss
损失函数包括focal loss、IoU loss和交叉熵损失,用于训练分类、定位和centerness分支。3.2 模型结构
模型继续沿用ResNet和FPN层,进行公平比较。FPN输出的特征层与RetinaNet类似,但FCOS在FPN输出的最后一层特征层上进行额外卷积,与RetinaNet在输入特征层上进行额外卷积不同。在推理阶段,注意centerness与分类分数的乘积作为最终得分,且需要进行NMS操作。4. 总结与未来方向
FCOS是一个简单、温柔、有力量的锚框自由方法,地位重要,思想借鉴于语义分割,流程类似传统目标检测,包括生成先验、正负样本匹配、bbox编码和NMS等,额外加入centerness分支以提升检测质量。 未来,FCOS的研究方向可能包括更深入的理论分析、模型优化和跨领域应用探索。5. 源码
mmdetection提供了FCOS的配置文件和代码实现,包括多个版本和改进。了解这些细节有助于深入理解FCOS的实现和优化策略。fcnt1.h:No such file or directory是什么意思?
open.c:5:: fcnt1.h:No such file or directory这句话提示说没有发现"fcnt1.h"这个文件,然后之下的错误就是因这个而起的,个人认为是因为楼主输入有误,应该是fcntl.h,最后的字符是L的小写,而非数字1.楼主再试试看...^_^
深度学习语义分割篇——FCN原理详解篇
深入探索深度学习的语义分割领域,FCN:关键原理揭示 在一系列图像处理的里程碑中,从基础的图像分类到目标检测的革新,我们已经走过了很长一段路。秃头小苏的深度学习系列现在聚焦于语义分割,特别是FCN(Fully Convolutional Network)的精髓。回顾:我们曾深入讲解了图像分类基础和YOLO系列,以及Faster R-CNN的源码剖析,这些都是我们探索深度学习的基石。
新起点:近期,我们将深入探讨语义分割的FCN模型,挑战传统观念,理解其结构与原理。
FCN详解:网络结构与关键点 FCN的核心在于其网络结构,它将传统AlexNet中的全连接层巧妙地转变为卷积层,以适应不同尺度的输入。关键在于特征提取和上采样技术,使得网络能输出与输入图像大小相同的像素级分类结果,每个像素对应类(包括背景)。转型亮点:FCN-、FCN-和FCN-8s三种结构,分别基于VGG的不同上采样倍数。这些网络从下采样VGG的特征图开始,通过转置卷积进行上采样,以还原原始图像尺寸。
损失函数:FCN的训练过程涉及GT(单通道P模式),通过比较网络输出与GT的差异来计算损失,损失函数驱动网络优化,目标是使输出尽可能接近真实标签。
深入理解:细节揭示与实践 FCN-8s的独特之处在于它利用多尺度信息,通过结合不同尺度的特征来提高分割精度。在理论层面上,我们已经概述了基本原理。在后续的代码实战中,我们将深入剖析cross_entropy损失函数,一步步揭示其在实际训练中的作用。 附录:VOC语义分割标注详解。VOC/SegmentationClass中的PNG标注文件,看似彩色,实则为单通道P模式调色板图像。理解RGB与P模式的区别至关重要,比如_.jpg(RGB)与_.png(P)之间的对比,揭示了调色板映射在单通道图像中的色彩信息。掌握这些细节,将有助于我们更深入地领悟FCN的工作原理。2024-11-30 00:162132人浏览
2024-11-29 23:481943人浏览
2024-11-29 23:28320人浏览
2024-11-29 22:372068人浏览
2024-11-29 22:312552人浏览
2024-11-29 22:032463人浏览
1.Python 爬虫 | 获取涨停原因2.预测涨停板选股公式,有助于发现牛股起涨3.涨停回马枪附源码)无惧挖坑?被忽视的一面4.通达信一字板涨停指标公式源码怎么写Python 爬虫 | 获取涨停原因
1.股票机构专家如何赚钱2.什么是主力派发?股票机构专家如何赚钱 机构赚钱和私募一样,通过低买高卖赚钱。同样也是经过建仓,拉高,出货几个阶段完成赚钱过程。以下是个人回答问题的一些总结,你可以参考下
1.集合竞价选股公式源码2.阳包阴选股公式源码3.手机炒股怎样设置选股指标?4.护盘k线选股公式源码5.换手率公式选股源码集合竞价选股公式源码 集合竞价选股公式源码的具体内容需要根据特定的选股策略