1.整数的已知源码源码原码、反码、的的源多少补码是为求什么意思
2.计算机中的二进制补码如何运算?
整数的原码、反码、其源求补码是码已码什么意思
整数的原码、反码、已知源码源码virtualapk 源码补码是的的源多少十进制数在机器里面的二进制表示方式。
在计算机内,为求定点数有3种表示法:原码、其源求反码和补码。码已码
所谓原码就是已知源码源码前面所介绍的二进制定点表示法,即最高位为符号位,的的源多少“0”表示正,为求“1”表示负,其源求其余位表示数值的码已码大小。
反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。
补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
1、原码、反码和补码的表示方法
(1) 原码:在数值前直接加一符号位的表示法。
例如: 符号位 数值位
[+7]原= 0 B
[-7]原= 1 B
注意:a. 数0的原码有两种形式:
[+0]原=B [-0]原=B
b. 8位二进制原码的表示范围:-~+
(2)反码:
正数:正数的反码与原码相同。
负数:负数的反码,符号位为“1”,数值部分按位取反。
例如: 符号位 数值位
[+7]反= 0 B
[-7]反= 1 B
注意:a. 数0的反码也有两种形式,即
[+0]反=B
[- 0]反=B
b. 8位二进制反码的理财记账 android源码表示范围:-~+
(3)补码的表示方法
1)模的概念:把一个计量单位称之为模或模数。例如,时钟是以进制进行计数循环的,即以为模。在时钟上,时针加上(正拨)的整数位或减去(反拨)的整数位,时针的位置不变。点钟在舍去模后,成为(下午)2点钟(=-=2)。从0点出发逆时针拨格即减去小时,也可看成从0点出发顺时针拨2格(加上2小时),即2点(0-=-=-+=2)。因此,在模的前提下,-可映射为+2。由此可见,对于一个模数为的循环系统来说,加2和减的效果是一样的;因此,在以为模的系统中,凡是减的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。和2对模而言互为补数。
同理,计算机的运算部件与寄存器都有一定字长的限制(假设字长为8),因此它的运算也是一种模运算。当计数器计满8位也就是rtd1295源码个数后会产生溢出,又从头开始计数。产生溢出的量就是计数器的模,显然,8位二进制数,它的模数为=。在计算中,两个互补的数称为“补码”。
2)补码的表示:
正数:正数的补码和原码相同。
负数:负数的补码则是符号位为“1”,数值部分按位取反后再在末位(最低位)加1。也就是“反码+1”。
例如: 符号位 数值位
[+7]补= 0 B
[-7]补= 1 B
补码在微型机中是一种重要的编码形式,请注意:
a. 采用补码后,可以方便地将减法运算转化成加法运算,运算过程得到简化。正数的补码即是它所表示的数的真值,而负数的补码的数值部份却不是它所表示的数的真值。采用补码进行运算,所得结果仍为补码。
b. 与原码、反码不同,数值0的补码只有一个,即 [0]补=B。
c. 若字长为8位,则补码所表示的范围为-~+;进行补码运算时,应注意所得结果不应超过补码所能表示数的云服务php源码范围。
2.原码、反码和补码之间的转换
由于正数的原码、补码、反码表示方法均相同,不需转换。
在此,仅以负数情况分析。
(1) 已知原码,求补码。
例:已知某数X的原码为B,试求X的补码和反码。
解:由[X]原=B知,X为负数。求其反码时,符号位不变,数值部分按位求反;求其补码时,再在其反码的末位加1。
1 0 1 1 0 1 0 0 原码
1 1 0 0 1 0 1 1 反码,符号位不变,数值位取反
1 +1
1 1 0 0 1 1 0 0 补码
故:[X]补=B,[X]反=B。
(2) 已知补码,求原码。
分析:按照求负数补码的逆过程,数值部分应是最低位减1,然后取反。agentweb安卓源码但是对二进制数来说,先减1后取反和先取反后加1得到的结果是一样的,故仍可采用取反加1 有方法。
例:已知某数X的补码B,试求其原码。
解:由[X]补=B知,X为负数。求其原码表示时,符号位不变,数值部分按位求反,再在末位加1。
1 1 1 0 1 1 1 0 补码
1 0 0 1 0 0 0 1 符号位不变,数值位取反
1 +1
1 0 0 1 0 0 1 0 原码
1.3.2 有符号数运算时的溢出问题
请大家来做两个题目:
两正数相加怎么变成了负数?
1)(+)+(+)=?
0 1 0 0 1 0 0 0 B +
+ 0 1 1 0 0 0 1 0 B +
1 0 1 0 1 0 1 0 B -
两负数相加怎么会得出正数?
2)(-)+(-)=?
1 0 1 0 1 1 0 1 B -
+ 1 0 1 1 0 0 0 0 B -
0 1 0 1 1 1 0 1 B +
思考:这两个题目,按照正常的法则来运算,但结果显然不正确,这是怎么回事呢?
答案:这是因为发生了溢出。
如果计算机的字长为n位,n位二进制数的最高位为符号位,其余n-1位为数值位,采用补码表示法时,可表示的数X的范围是 -2n-1≤X≤2n-1-1
当n=8时,可表示的有符号数的范围为-~+。两个有符号数进行加法运算时,如果运算结果超出可表示的有符号数的范围时,就会发生溢出,使计算结果出错。很显然,溢出只能出现在两个同符号数相加或两个异符号数相减的情况下。
对于加法运算,如果次高位(数值部分最高位)形成进位加入最高位,而最高位(符号位)相加(包括次高位的进位)却没有进位输出时,或者反过来,次高位没有进位加入最高位,但最高位却有进位输出时,都将发生溢出。因为这两种情况是:两个正数相加,结果超出了范围,形式上变成了负数;两负数相加,结果超出了范围,形式上变成了正数。
而对于减法运算,当次高位不需从最高位借位,但最高位却需借位(正数减负数,差超出范围),或者反过来,次高位需从最高位借位,但最高位不需借位(负数减正数,差超出范围),也会出现溢出。
在计算机中,数据是以补码的形式存储的,所以补码在c语言的教学中有比较重要的地位,而讲解补码必须涉及到原码、反码。本部分演示作何一个整数的原码、反码、补码。过程与结果显示在列表框中,结果比较少,不必自动清除,而过程是相同的,没有必要清除。故需设清除各部分及清除全部的按钮。测试时注意最大、最小正负数。用户使用时注意讲解不会溢出:当有一个数的反码的全部位是1才会溢出,那么它的原码是...,它不是负数,故不会溢出。
在n位的机器数中,最高位为符号位,该位为零表示为正,为一表示为负;其余n-1位为数值位,各位的值可为零或一。当真值为正时,原码、反码、补码数值位完全相同;当真值为负时,原码的数值位保持原样,反码的数值位是原码数值位的各位取反,补码则是反码的最低位加一。注意符号位不变。
总结:提示信息不要太少,可“某某数的反码是某某”,而不是只显示数值。
1.原码的求法:(1)对于正数,转化为二进制数,在最前面添加一符号位(这是规定的),用1表示负数,二表示正数.如: 是一个字节,其中0为符号位,表示是正数,其它七位表示二进制的值.其实,机器不管这些,什么符号位还是值,机器统统看作是值来计算. 正数的原码、反码、补码是同一个数!
(2)对于负数,转化为二进制数,前面符号位为1.表示是负数.
计算原码只要在转化的二进制数前面加上相应的符号位就行了.
2.反码的求法:对于负数,将原码各位取反,符号位不变.
3.补码的求法:对于负数,将反码加上二进制的1即可,也就是反码在最后一位上加上1就是补码了.
计算机中的二进制补码如何运算?
二进制补码的运算法则是0+0=0,向前进位为0;1+1=0,向前进位为1;1+0=1向前进位为0。运算结果如果最高位为零,则结果为正,最高位为一,结果为负。补码运算的结果仍然是补码。1、二进制补码的计算方法:
二进制的补码计算非常简单,各种教材中也经常使用二进制来说明源码、反码与补码三者的关系,掌握一定基础的人都知道一下规则:
(1)原码。
最高位为符号位,0表示正数,1表示负数。
例如:X=0b(3),四比特表示原码=(3);
X=-0b(-3),四比特表示原码=();
(2)反码。
最高位为符号位,0表示正数,1表示负数。正数的反码等于本身,负数的反码除符号位外,各位取反。
例如:X=0b(3),四比特表示原码=(3),对应反码为=(3);
X=-0b(-3),四比特表示原码=(),对应反码为=();
(3)补码。
最高位为符号位,0表示正数,1表示负数。
正数的补码等于本身,负数的补码等于反码+1:
例如:X=0b(3),四比特表示原码=(3),对应反码为=(3),补码为=(3);
X=-0b(-3),四比特表示原码=(),对应反码为=(),补码为();
2、十进制补码的计算方法:
对于十进制数来说,通过前面的性质不难得到正十进制数补码等于其本身,对于负十进制数来说如果还按位进行运算就太麻烦了!为了讲明白,我们从补码的起因说起:
“反码加一”只是补码所具有的一个性质,不能被定义成补码。负数的补码,是能够和其相反数相加通过溢出从而使计算机内计算结果变为0的二进制码。这是补码设计的初衷,具体目标就是让1+(-1)=0,这利用原码是无法得到的:
(1)+(-1)=(-2)。
而在补码中:
(1补)+(-1补)=(1溢出)。
所以对于一个n位的负数-X,有如下关系:X补+(-X)补=...0=2n。
所以假设寄存器是n位的,那么-X的补码,应该是2n−X的二进制编码。