皮皮网

【delphi 控件 源码】【源码编辑器做简单游戏设计源码】【h5手游源码 a5源码】tcp 源码分析

时间:2025-01-18 16:01:45 来源:mvc4后台开发框架源码

1.Python modbus_tk 库源码分析
2.TCP长连接服务优雅重启背后的码分秘密
3.零基础5分钟开发一个简单的ModBus TCP主站上位机(附源码)
4.Nginx源码分析 - HTTP模块篇 - TCP连接建立过程
5.从Linux源码看Socket(TCP)的listen及连接队列
6.TCP之深入浅出send&recv

tcp 源码分析

Python modbus_tk 库源码分析

       modbus_tcp 协议是工业项目中常用的设备数据交互协议,基于 TCP/IP 协议。码分协议涉及两个角色:client 和 server,码分或更准确地称为 master 和 slave。码分modbus_tk 库作为 Python 中著名且强大的码分 modbus 协议封装模块,其源码值得深入分析,码分delphi 控件 源码尤其是码分在关注并发量等方面的需求时。深入研究 modbus_tk 库的码分源代码和实现逻辑,对在库的码分基础上进行更进一步的开发尤其重要。因此,码分本文旨在提供对 modbus_tk 库源码的码分深入解析,以供参考。码分

       实例化 TcpMaster 对象时,码分首先导入 TcpMaster 类,码分该类继承自 Master,码分但在实例化时并未执行任何操作。Master 的 `__init__()` 方法同样没有执行任何具体任务,这使得 TCP 链接在创建 TcpMaster 实例时并未立即建立。TCP 链接的建立在 `open()` 方法中实现,该方法由 TcpMaster 类执行。在 `open()` 方法中,自定义了超时时间,进一步保证了 TCP 连接的建立。

       在 TcpMaster 类的 `execute()` 方法中,核心逻辑在于建立 TCP 协议的解包和组包。在读写线圈或寄存器等操作时,都会调用 `execute()` 方法。详细分析了 `execute()` 方法的源码编辑器做简单游戏设计源码具体实现,包括通过注释掉的组包等过程代码,以及 `TcpMaster._make_query()` 方法的实现。`_make_query()` 方法封装了请求构建过程,包括生成事务号、构建请求包和发送请求。

       在请求构建完成后,`_send()` 方法负责通过 `select` 模块进行连接状态检测,确保发送数据前连接无异常。通过分析 `execute()` 方法的后续逻辑,我们能够看到一个完整的组包、发送数据及响应解析的源码流程。响应解析涉及 `TcpMaster.execute()` 方法中对 MBAP 和 PDU 的分离、解包及数据校验。

       在解析响应信息时,`TcpQuery().parse_response()` 方法解包并验证 MBAP 和 PDU,确保数据一致性。通过此过程,获取了整个数据体,完成了响应信息的解析。在 `execute()` 方法的后续部分,没有执行新的 I/O 操作,进一步简化了流程。

       为了保障线程安全,`threadsafe` 装饰器被添加在 `Master.execute()` 方法及 `TcpQuery._get_transaction_id()` 方法上。这一装饰器确保了跨线程间的同步,但可能引起资源竞争问题。在实际应用中,h5手游源码 a5源码为了避免同一设备不能同时读写的情况,可以显式传递 `threadsafe=False` 关键字参数,并实现自定义锁机制。

       modbus_tk 模块提供了丰富的钩子函数,如 `call_hooks`,在数据传递生命周期中自动运行,实现特定功能的扩展。常见的钩子函数包括初始化、结束、请求处理等,这些功能的实现可以根据具体需求进行定制化。

TCP长连接服务优雅重启背后的秘密

       本文揭秘TCP长连接服务优雅重启的奥秘,探讨如何在升级过程中保持服务连续性,以及cloudflare/tableflip库的源码设计。理解原理至关重要,以实现顺畅的使用体验。

       面对升级长连接服务的需求,如游戏、IM或推送服务器,问题核心在于如何在不中断客户端连接的情况下进行服务升级。以下是关键步骤:

       确保新进程继承旧进程的监听套接字,避免因创建新套接字导致的连接丢失,因为这会保持连接队列的完整性。

       在Linux系统中,通过继承旧套接字并利用内核的半连接/全连接队列机制来实现。

       Go语言中,可通过继承文件描述符和使用`syscall.ForkExec`函数来实现。UE4 源码版加载非源码版x

       cloudflare/tableflip库的源码展示了类似的流程,提供了封装和额外功能,如Ready信号通知和更精细的管理文件描述符。

       深入理解fork和exec系统调用至关重要,如fork()复制父进程的文件描述符,execve()替换进程而保持继承特性。在forkAndExecInChild中,fd数组的处理确保了新进程的文件描述符顺序正确。

       总之,优雅重启TCP长连接服务是通过fork()创建子进程并复制必要的套接字,再通过execve()启动新的服务实例,实现了无感知的升级过程。

零基础5分钟开发一个简单的ModBus TCP主站上位机(附源码)

       在工业控制和现场数据采集领域,Modbus协议因其广泛的应用而备受青睐。本文将指导你在Visual Studio 环境下,使用C#和Winform框架,从零开始,仅用5分钟,开发一个简单的Modbus TCP主站上位机。首先,你需要下载并安装Visual Studio社区版,确保选择".NET桌面开发"等必要组件。

       安装完成后,新建一个Windows窗体应用项目,命名为"ModbusMaster"。接下来,安装Easy ModbusTcp库,影视app源码双端千月影视源码它是基于.NET Framework的Modbus通信库,支持多种协议和编程语言,便于设备通信和数据采集。

       在代码编写部分,你需要设计界面,然后引入EasyModbus库,编写关键功能如连接设备、读写Modbus报文的函数。例如,`btn_connect_Click`方法用于连接设备,`SlaveCoilWrite`方法则负责单个或多个输出寄存器的写入操作。通过点击按钮,你可以控制设备的布尔状态。

Nginx源码分析 - HTTP模块篇 - TCP连接建立过程

       Nginx源码分析 - HTTP模块篇 - TCP连接建立过程

       在上一章节中,我们已经了解了HTTP模块的初始化过程。本章节将深入剖析监听套接字的初始化函数以及Nginx连接的全程流程。

       首先, ngx__listen。其中,除了fastopen外的逻辑(fastopen将在单独章节深入讨论)最终调用inet_csk_listen_start,将sock链入全局的listen hash表,实现对SYN包的高效处理。

       值得注意的是,SO_REUSEPORT特性允许不同Socket监听同一端口,实现内核级的负载均衡。Nginx 1.9.1版本启用此功能后,性能提升3倍。

       半连接队列与全连接队列是连接处理中的关键组件。通常提及的sync_queue与accept_queue并非全貌,sync_queue实际上是syn_table,而全连接队列为icsk_accept_queue。在三次握手过程中,这两个队列分别承担着不同角色。

       在连接处理中,除了qlen与sk_ack_backlog计数器外,qlen_young计数器用于特定场景下的统计。SYN_ACK的重传定时器在内核中以ms为间隔运行,确保连接建立过程的稳定。

       半连接队列的存在是为抵御半连接攻击,避免消耗大量内存资源。通过syn_cookie机制,内核能有效防御此类攻击。

       全连接队列的最大长度受到限制,超过somaxconn值的连接会被内核丢弃。若未启用tcp_abort_on_overflow特性,客户端可能在调用时才会察觉到连接被丢弃。启用此特性或增大backlog值是应对这一问题的策略。

       backlog参数对半连接队列容量产生影响,导致内核发送cookie校验时出现常见的内存溢出警告。

       总结而言,TCP协议在数十年的演进中变得复杂,深入阅读源码成为分析问题的重要途径。本文深入解析了Linux内核中Socket (TCP)的"listen"及连接队列机制,旨在帮助开发者更深入地理解网络编程。

TCP之深入浅出send&recv

       接触过网络开发的人,了解上层应用如何使用send函数发送数据以及recv接收数据。但是,send和recv的实现原理是什么?本文将简单介绍TCP中发送缓冲区和接收缓冲区的作用,并讲解Linux系统下TCP发送和接收数据的具体实现。

       缓冲区在数据传输中起着临时缓存的作用。发送端将数据拷贝到发送缓冲区后,立即返回应用层执行其他操作,而接收端则将网络中的数据拷贝到缓冲区等待应用层读取。

       发送缓冲区在应用层调用send()发送数据时,数据会被拷贝到socket的内核发送缓冲区。send()函数在应用层返回时,并不一定意味着数据已经发送到对端,而是数据已放入socket的内核发送缓冲区。

       Linux内核提供两种方式查看tcp缓冲区大小:通过/etc/sysctl.ronf下的net.ipv4.tcp_wmem值或命令'cat /proc/sys/net/ipv4/tcp_wmem'。以笔者服务器为例,发送缓冲区大小为、、。

       通过程序可以修改当前tcp socket的发送缓冲区大小,只影响特定的socket。

       接收缓冲区用于缓存网络上来的数据,直至应用进程读取为止。当应用进程未读取数据且接收缓冲区已满时,收端会通知发端接收窗口关闭(win=0),实现TCP的流量控制。

       接收缓冲区大小可以通过查看/etc/sysctl.ronf下的net.ipv4.tcp_rmem值或命令'cat /proc/sys/net/ipv4/tcp_rmem'获取。同样,可以通过修改程序大小修改接收缓冲区,仅影响当前特定socket。

       TCP的四层模型包括应用层、传输层、网络层和数据链路层。应用层创建socket并建立连接后,可以调用send函数发送数据。传输层处理数据,以TCP为例,其主要功能包括流量控制、拥塞控制等。

       当发送数据时,数据会从应用层、传输层、网络层、数据链路层依次传递。上图为send函数源码调用逻辑图,若对源码感兴趣,可查阅net/tcp.c获取详细实现。

       recv函数实现类似,从数据链路层接收数据帧,通过网卡驱动处理后,进入内核进行协议层处理,最终将数据放入socket的接收缓冲区。

       在实际应用中,非阻塞send时,发送端可能发送了大量数据,但实际只发送了部分,缓冲区中仍有大量数据未发送。接收端recv获取数据时,可能只收到部分数据。这种情况下,应用层需要正确处理超时、断开连接等情况。

       总结来说,TCP的send和recv函数分别在应用层和传输层实现数据的发送和接收,通过内核的缓冲区控制数据的流动。正确理解这些原理对于网络编程至关重要。

Netty源码-一分钟掌握4种tcp粘包解决方案

       TCP报文的传输过程涉及内核中recv缓冲区和send缓冲区。发送端,数据先至send缓冲区,经Nagle算法判断是否立即发送。接收端,数据先入recv缓冲区,再由内核拷贝至用户空间。

       粘包现象源于无明确边界。解决此问题的关键在于界定报文的分界。Netty提供了四种方案来应对TCP粘包问题。

       Netty粘包解决方案基于容器存储报文,待所有报文收集后进行拆包处理。容器与拆包处理分别在ByteToMessageDecoder类的cumulation与decode抽象方法中实现。

       FixedLengthFrameDecoder是通过设置固定长度参数来识别报文,非报文长度,避免误判。

       LineBasedFrameDecoder以换行符作为分界符,确保准确分割报文,避免将多个报文合并。

       LengthFieldPrepender通过设置长度字段长度,实现简单编码,为后续解码提供依据。

       LengthFieldBasedFrameDecoder则是一种万能解码器,能够解密任意格式的编码,灵活性高。

       实现过程中涉及的参数包括:长度字段的起始位置offset、长度字段占的字节数lengthFieldLength、长度的调整lengthAdjustment以及解码后需跳过的字节数initialBytesToStrip。

       在实际应用中,为自定义协议,需在服务器与客户端分别实现编码与解码逻辑。服务器端负责发送经过编码的协议数据,客户端则接收并解码,以还原协议信息。

推荐资讯
广西曝光“神医”“神药”违法广告典型案例

广西曝光“神医”“神药”违法广告典型案例

电子文档源码_电子文档源码怎么弄

电子文档源码_电子文档源码怎么弄

printf源码解读

printf源码解读

workflow源码剖析

workflow源码剖析

国家宗教事务局原局长崔茂虎一审获刑11年

国家宗教事务局原局长崔茂虎一审获刑11年

房间预定源码_房间预定源码有什么用

房间预定源码_房间预定源码有什么用

copyright © 2016 powered by 皮皮网   sitemap